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• Motivation 
• Overview of wakefields
• Simulations Tools: GdfidL and ECHO3D
• Cross-check studies for 

• NSLS-II flange absorbers 
• NSLS-II RF bellows 
• Low-gap In-vacuum undulator 
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Motivation  
q Performance of low-emittance light sources is limited by 

• The short-range wakefields or impedance, especially 
beam-induced heating of the vacuum chamber 
components

q Presented study discuss
• Cross-checking of two electromagnetic solvers, GdfidL 

and ECHO3D 
• Convergence studies of wake potential and geometric 

impedance in the NSLS-II flange absorber, bellows and 
IVU

3



Mini-workshop on impedance modeling and impedance effects 2022Mini-workshop on impedance modeling and impedance effects 2022

Basic Definitions 
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• Wake function: The wake function is the electromagnetic response of a 
beam pipe/chamber/object to a charge pulse. 

• The response depends on the boundary conditions and can occur e.g., due to 
finite conductivity (resistive wall) or sudden changes in the geometry of the 
vacuum chamber cross section.
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Basic Definitions   
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• Wakefield codes: direct solution of Maxwell’s equations in the time-domain

• Post processing: wake potentials and coupling impedances by simulated field 
data
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Simulation Tools 
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Parameter GdfidL ECHO3D
Input geometry STL file, Text description of 

the device
STL file

Numerical 
method

Yee’s
finite-difference time-domain 

method, window-wake 
technique

‘‘Transversal-
electric/transversal-

magnetic” splitting of the 
field components in time

Mesh size Δ ≤ 𝜎'/15
Equal mesh in longitudinal 

and transverse plan 

Δ ≤ 𝜎'/5
Good accuracy is 

achievable with coarse 
transverse mesh 

Parallelization Parallelized for multi-core 
clusters

Thread parallelized with 
OPENMI  
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NSLS-II Flange Absorbers
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NSLS-II flange geometries configs to protect the vacuum components 
from synchrotron radiation:

1. ABS3001−21mm × 64mm − 67 
2. ABS3018 − 21mm × 64mm − 39
3. ABS3022 − 21mm × 44mm − 1
4. ABS3024 − 21mm × 50mm − 1
5. ABS3026 − 21mm × 54mm − 1
6. ABS3028 − 21mm × 58mm − 1
7. ABS3030 − 21mm × 60mm − 2
8. ABS3040 − 25mm × 50mm −1
9. DG-CHM-1029 − 25mm × 40mm − 1 

The full height of the vertical aperture: 21mm,
The horizontal full aperture: 44 mm to 64 mm
The standard horizontal aperture: 76 mm 

21
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Longitudinal impedance Convergence 
Studies – NSLS-II Flange Absorbers 

• Accurate results for a 
bunch length of 0.3mm 
requires a GdfidL mesh 
spacing Δ ≤ 𝜎'/15

• ECHO3D gives accurate 
results with coarse 
mesh Δ ≤ 𝜎'/5

• ECHO3D works well 
even if we use only 5 
mesh steps on bunch 
sigma longitudinally and 
ten times more coarse 
mesh transversely
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Comparison of Loss Factor 
Loss factor: estimates the beam-induced heating 

𝑘)*++ =
1
𝜋:
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𝑑𝜔 ReZ‖ 𝜔 𝑒#&!."
!/(! Z‖: longitudinal impedance, 𝜎0: bunch length 

• As the nominal bunch length of 
NSLS-II is approximately 3mm, 
the heat load calculations can be 
performed with a long bunch 
rather than a point-like bunch of 
0.3mm length 
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Transverse Wakepotential and Impedance 
Studies – NSLS-II Flange Absorbers 

σs = 2mm , factor = 2.3 σs = 0.3 mm, factor = 2.3

There is a discrepancy 
of approx. factor 2 in 
the transverse 
wakefields. 
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NSLS-II RF Bellows
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Coil-spring 

Contact springs  

Rf fingers 

The location of the RF 
contact fingers relative 
to the regular vacuum 
chamber plays a 
significant role in 
producing the short-
range wakepotential. 
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Longitudinal Impedance – NSLS-II 
Bellows 

• For this 124 mm long rf-
shielded bellows:  GdfidL 
takes about 42 hrs to 
simulate for the bunch 
length of 0.3mm with a 
Δ=20μm for s=1m on the 
NSLS-II cluster using 8 
nodes. 

• Contrary, ECHO3D takes 
about 8 hrs for Δ = 25 μm 
with 96 threads on a single 
node. 
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Transverse Wakepotential and Impedance 
Studies – NSLS-II RF Bellows 

σ+ = 0.3 mm, factor = 2.1σ+ = 2 mm, factor = 2.6

• Dispersion errors even for Δ ≤ 𝜎'/20
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In-Vacuum Undulator  
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σ! = 1 mm
f = 2.7

σ! = 5 mm

• Small-gap ID chambers 
significantly affect the beam 
dynamics in modern light 
sources 

• NSLS-II to have a large number 
of in-vacuum ID chambers with 
gap down to 6mm

• Studied 1.2m ID with taper-
transition enclosed in a chamber 

• Further studies are 
required for σ+ =
5 mm case. 
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Conclusion 
• A well-estimated impedance budget is a crucial part of estimating the 

performance of facilities with intense beams, and such estimates should 
be based on vacuum component designs as installed in the ring.

• For high- resolution wakefields in complex 3D geometries, we observed 
that GdfidL is computationally heavy and RAM consuming, contrary it is 
doable in ECHO3D with a coarse mesh. 

• The only limitation of ECHO3D is in the limit of wake length due to the 
huge size of output files, which is troublesome for post-processing. 

• The longitudinal impedance and loss factor calculated by GdfidL and 
ECHO3D show very good agreement. Whereas there is a discrepancy of 
factor of approx. 2 in the transverse wake computation. 
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Thank you! 
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