

A cross-check of wakefield simulations by GdfidL and ECHO3D codes

Aamna Khan

December 16, 2022

The research described herein is Fundamental Research as described in National Security Decision Directive 189, dated September 21, 1985, and the USD (AT&L) memoranda on Fundamental Research, dated May 24, 2010, and on Contracted Fundamental Research, dated June 26, 2008.

Outline

- Motivation
- Overview of wakefields
- Simulations Tools: GdfidL and ECHO3D
- Cross-check studies for
 - NSLS-II flange absorbers
 - NSLS-II RF bellows
 - Low-gap In-vacuum undulator

Motivation

Performance of low-emittance light sources is limited by

 The short-range wakefields or impedance, especially beam-induced heating of the vacuum chamber components

Presented study discuss

- Cross-checking of two electromagnetic solvers, GdfidL and ECHO3D
- Convergence studies of wake potential and geometric impedance in the NSLS-II flange absorber, bellows and IVU

Basic Definitions

- Wake function: The wake function is the electromagnetic response of a beam pipe/chamber/object to a charge pulse.
- The response depends on the boundary conditions and can occur e.g., due to finite conductivity (resistive wall) or sudden changes in the geometry of the vacuum chamber cross section.

Basic Definitions

• Wakefield codes: direct solution of Maxwell's equations in the time-domain

$$\frac{\partial B}{\partial t} = -\nabla \times E,$$

rigid, ultra-relativistic bunch

$$\frac{\partial \varepsilon E}{\partial t} = \nabla \times \frac{1}{\mu} B - j, \qquad j = qc\lambda_z \rho(x, y, z - ct)$$

Post processing: wake potentials and coupling impedances by simulated field data

Simulation Tools

Parameter	GdfidL	ECHO3D
Input geometry	STL file, Text description of the device	STL file
Numerical method	Yee's finite-difference time-domain method, window-wake technique	"Transversal- electric/transversal- magnetic" splitting of the field components in time
Mesh size	$\Delta \leq \sigma_s/15$ Equal mesh in longitudinal and transverse plan	$\Delta \leq \sigma_s/5$ Good accuracy is achievable with coarse transverse mesh
Parallelization	Parallelized for multi-core clusters	Thread parallelized with OPENMI

NSLS-II Flange Absorbers

NSLS-II flange geometries configs to protect the vacuum components from synchrotron radiation:

- 1. $ABS3001-21mm \times 64mm 67$
- 2. ABS3018 21mm × 64mm 39
- 3. ABS3022 21mm × 44mm 1
- 4. ABS3024 21mm × 50mm 1
- 5. ABS3026 21mm × 54mm 1
- 6. ABS3028 21mm × 58mm 1
- 7. ABS3030 21mm × 60mm 2
- 8. ABS3040 25mm × 50mm 1
- 9. DG-CHM-1029 25mm × 40mm 1

The full height of the vertical aperture: 21mm, The horizontal full aperture: 44 mm to 64 mm The standard horizontal aperture: 76 mm

7

Longitudinal impedance Convergence Studies – NSLS-II Flange Absorbers

- Accurate results for a bunch length of 0.3mm requires a GdfidL mesh spacing $\Delta \le \sigma_s/15$
- ECHO3D gives accurate results with coarse mesh $\Delta \le \sigma_s/5$
- ECHO3D works well even if we use only 5 mesh steps on bunch sigma longitudinally and ten times more coarse mesh transversely

Comparison of Loss Factor

Loss factor: estimates the beam-induced heating

$$k_{\rm loss} = \frac{1}{\pi} \int_{0}^{\infty} d\omega \, {\rm ReZ}_{\parallel}(\omega) e^{-\omega^2 \sigma_b^2/c^2}$$

0.15 0.15 0.10 0.05 0.00 1 2 3 4 5 6 7Bunch length (mm)

 Z_{\parallel} : longitudinal impedance, σ_b : bunch length

 As the nominal bunch length of NSLS-II is approximately 3mm, the heat load calculations can be performed with a long bunch rather than a point-like bunch of 0.3mm length

Transverse Wakepotential and Impedance Studies – NSLS-II Flange Absorbers

NSLS-II RF Bellows

National Laboratory

11

Longitudinal Impedance – NSLS-II Bellows

- For this 124 mm long rfshielded bellows: GdfidL takes about 42 hrs to simulate for the bunch length of 0.3mm with a Δ =20µm for s=1m on the NSLS-II cluster using 8 nodes.
- Contrary, ECHO3D takes about 8 hrs for Δ = 25 µm with 96 threads on a single node.

Mini-workshop on impedance modeling and impedance effects 2022 ¹²

Transverse Wakepotential and Impedance Studies – NSLS-II RF Bellows

• Dispersion errors even for $\Delta \leq \sigma_s/20$

In-Vacuum Undulator

- Small-gap ID chambers significantly affect the beam dynamics in modern light sources
- NSLS-II to have a large number of in-vacuum ID chambers with gap down to 6mm
- Studied 1.2m ID with tapertransition enclosed in a chamber

• Further studies are required for $\sigma_s = 5 \text{ mm case}$.

300

GdfidL

250

200

Conclusion

- A well-estimated impedance budget is a crucial part of estimating the performance of facilities with intense beams, and such estimates should be based on vacuum component designs as installed in the ring.
- For high- resolution wakefields in complex 3D geometries, we observed that GdfidL is computationally heavy and RAM consuming, contrary it is doable in ECHO3D with a coarse mesh.
- The only limitation of ECHO3D is in the limit of wake length due to the huge size of output files, which is troublesome for post-processing.
- The longitudinal impedance and loss factor calculated by GdfidL and ECHO3D show very good agreement. Whereas there is a discrepancy of factor of approx. 2 in the transverse wake computation.

Thank you!

Acknowledgment:

BNL:

V. Smaluk, M. Seegitz, R. Todd, A. Blednykh

ECHO3D:

I. Zagorodnov

GdfidL: W. Bruns

