

f/Q vs Temp measurement at KEK

TTC high-Q/high-G WG

2022/12/14

KEK iCASA Kensei Umemori, Hayato Araki, Hayato Ito (Most of works have been done by Araki-san and Ito-san)

Normal measurement setup at VT

<u>Δf vs Temperature for furnace baked cavity</u>

- Deference of Δf depending on the treatment procedure is clearly seen.
- Some procedure seem to show dip of frequency.
 - \Rightarrow But not so clear.

QL vs Temperature for furnace baked cavity

Note: This plot is for QL, not Qo.

- Qo (QL) vs Temp is also measured.
- Again, the measurement around Tc Is difficult, due to small signal.

Some example of VNA spectrum difficulty after transition to RT

This is just typical example.

- General feature can be observed.
- Clear difference is also seen between treatment procedures.
- Data just around Tc is not so clear.
- Because of the drastic change of QL and relatively small coupling of the system, S21 spectrum around Tc is rather unstable.
- Shape of S21 baseline also somewhat change around Tc. ⇒Possible to affect as fake frequency shift

 Used long input & pickup antenna for f/Q measurements. (No-high power test was performed.)

- Qin ~ 4e6
- Qt ~ 6e7
- Focused on to measure f/Q around Tc correctly.
 - Measurement 1: Network analyzer (S21)
 - Measurement 2: Decay measurement using LLRF
- 120C, 48h baked cavity used for this study (following plots)

Decay (LLRF) measurement at 4K

S21 (NA) measurement at 4K

		Decay	NA	
Hayato A	Frequency	1 300. 212 369	1 300. 212 7	Sim
	Q_{L}	1.650E6	1.584E6	
	,		· · ·	

Similar results for both.

Innovation ter for olied

> perconducting ccelerators /ベーションセンター

Hume, 2022/00/00

Measurement1: S21(NA)

Name, 2022/00/00

Title of talk

He pressure dependence was corrected.

Comparison of 2 measurements

Both measurement shows relatively good agreement.

Name, 2022/00/00

Title of talk

Some trial... (very preliminary)

Should modify this number, considering anomalous skin effect. For the case for following plots, 1.37 was used.

$$R_{\rm s}(T) = \frac{G}{Q(T)}, \quad X_{\rm s}(T) = G\left(\frac{1}{Q(T_{\rm c})} - 2\frac{\Delta f(T)}{f}\right)$$

(Q1) Which number should be used?

(Q2) Large experimental error?

Name, 2022/00/00

TILLE OF LAIK

- KEK have taken f/Q vs Temperature data for many cavities and for many treatment procedures.
- General characteristics was well observed, but precision around Tc was suspicious.
- KEK tried special cooldown focused on f/Q vs T measurements, using strong coupling antenna for both of input and transmit line.
- Signal around Tc was clearly seen.
- We had been trying to analyze our data.
- But, there are some ambiguous parameter and also fitting is not so reliable.
- We hope some of you help us for analyzing our data.