2023 TYL-FJPPL Young Investigator Award

Tristan Fillinger

09/05/23

KEK

Institute of Particle and Nuclear Studies

Outline

FLAV-05 TYL

- Time-dependent CP violation (TDCPV) analysis on b \rightarrow s γ process
 - With Belle: on $B^0 \rightarrow K_s^0 \pi \pi \gamma$ using a new method to constrain the Standard model
 - With Belle II: Rediscovery of $K_s^0\pi\pi\gamma$ and $K_s^0\pi^0\gamma$ channels on data

D-RD-24 TYL

- Upgrade of the vertex detector of Belle II
 - Development of new fully pixelated geometries

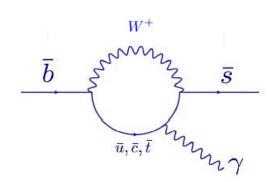
Outline

FLAV-05 TYL

- Time-dependent CP violation (TDCPV) analysis on b \rightarrow s γ process
 - With Belle: on $B^0 \rightarrow K_s^0 \pi \pi \gamma$ using a new method to constrain the Standard model
 - With Belle II: Rediscovery of $K_s^0\pi\pi\gamma$ and $K_s^0\pi^0\gamma$ channels on data

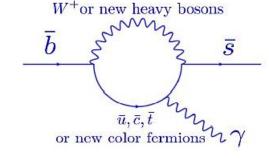
D-RD-24 TYL

- Upgrade of the vertex detector of Belle II
 - Development of new fully pixelated geometries


Why b \rightarrow sy decays are interesting?

- Goal: Discover New Physics beyond Standard Model
- With b \rightarrow s γ transitions:
 - Flavor changing neutral current (FCNC) transitions occurring at loop level only > Highly suppressed
 - In SM, photon almost fully polarized:

$$b \to s \gamma_L$$
 or $\overline{b} \to \overline{s} \gamma_R$


Loop described by Wilson coefficients:

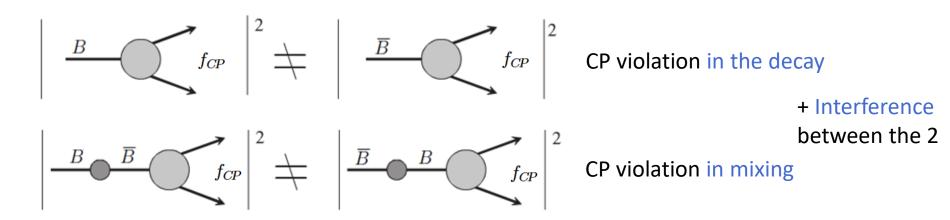
$$\mathcal{H}_{\text{eff}} \cong -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* [\boldsymbol{C_7} \langle \mathcal{O}_7 \rangle + \boldsymbol{C_7'} \langle \mathcal{O}_7' \rangle]$$

Why b \rightarrow sy decays are interesting?

- Goal: Discover New Physics beyond Standard Model
- With b \rightarrow s γ transitions:
 - Flavor changing neutral current (FCNC) transitions occurring at loop level only > Highly suppressed

In SM, photon almost fully polarized:

$$b \to s \gamma_L$$
 or $\overline{b} \to \overline{s} \gamma_R$


Loop described by Wilson coefficients:

$$\mathcal{H}_{\text{eff}} \cong -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\left(\boldsymbol{C_7^{\text{SM}}} + \boldsymbol{C_7^{\text{NP}}} \right) \langle \mathcal{O}_7 \rangle + \left(\boldsymbol{C_7^{\prime \text{NP}}} \right) \langle \mathcal{O}_7^{\prime} \rangle \right]$$

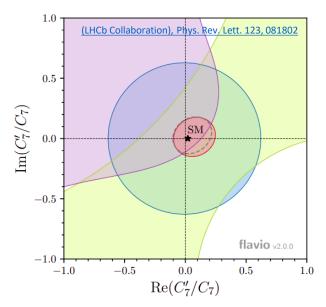
- New physics: Different couplings which enhance right-handed photon contributions (MSSM, LRSM, SUSY SU(5) GUT...)
 - Atwood et al., 1997; E. Kou et al., 2013; N. Haba et al., 2015
- Several analysis sensitive to photon polarization:
 - > Time-dependent CP observable measurement

Time dependent CP violation (TDCPV)

Source of the CP violation:

$$rac{\Gammaig(B^0(\Delta t) o f_{CP}ig)-\Gammaig(ar{B}^0(\Delta t) o f_{CP}ig)}{\Gammaig(B^0(\Delta t) o f_{CP}ig)+\Gammaig(ar{B}^0(\Delta t) o f_{CP}ig)} \ \cong \ rac{S}{\sin(\Delta m\Delta t)} + rac{A}{\cos(\Delta m\Delta t)} \ \stackrel{
ightarrow}{\swarrow} \ rac{CP\ violation\ coefficient}$$

- Photon polarization impacts the value of S (thus C_7 and C'_7)
- \rightarrow In the Standard Model: $S \simeq 0$ in b \rightarrow s γ
- \rightarrow If new physics : $S \neq 0$

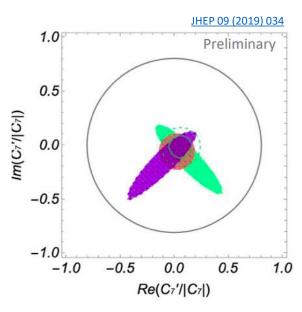

Time dependent CP violation (TDCPV)

Already measured:

Statistically limited BBBar PRD93 (2008): $S_{\pi^0 K_S^0 \gamma} = -0.78 \pm 0.59 \pm 0.09$ (467e6 $B\bar{B}$) Belle PRD74 (2006): $S_{\pi^0 K_S^0 \gamma} = -0.10 \pm 0.31 \pm 0.07$ (535e6 $B\bar{B}$) Babar PRD93 (2015): $S_{\pi^+ \pi^- K_S^0 \gamma} = 0.14 \pm 0.25 \pm 0.03$ (471e6 $B\bar{B}$) Belle PRL101 (2008): $S_{\pi^+ \pi^- K_S^0 \gamma} = 0.11 \pm 0.33 \pm 0.07$ (657e6 $B\bar{B}$)

- Get more data to reduce the uncertainty (Belle II analysis)
- Use the new method to better constrain the SM (started with Belle)

Current constrains on the Wilson coefficients


Constraints at 2σ

$$\longrightarrow$$
 $\mathcal{B}(B \to X_s \gamma)$
Inclusive BF measurement
(Belle & BaBar)

$$B^0
ightarrow K_{
m S}^0 \pi^0 \gamma$$
 Mixing induced CP asymmetry (Belle & BaBar)

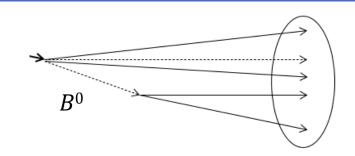
$$\begin{array}{ccc} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

$$B^0 \to K^{*0} e^+ e^-$$

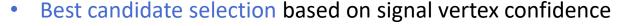
Angular analysis (LHCb)

New constrains with 10 ab-1 of Belle II data

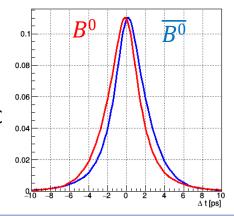
Outline

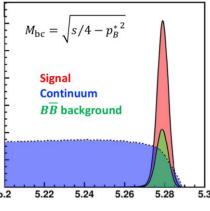

Tristan Fillinger

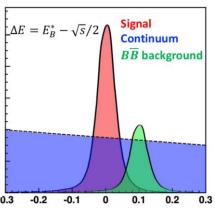
- Time-dependent CP violation (TDCPV) analysis on b \rightarrow s γ process
 - With Belle: on $B^0 \rightarrow K_s^0 \pi \pi \gamma$ using a new method to constrain the Standard model
 - Re-implementation of the full analysis up to the final fit to get the parameters
 - Analysis done on MC
 - With Belle II: on $K_s^0 \pi \pi \gamma$ and $K_s^0 \pi^0 \gamma$ channels


- Upgrade of the vertex detector of Belle II
 - Development of new fully pixelated geometries

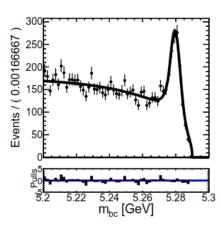
Analysis strategy

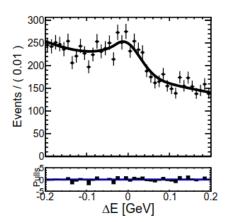

- Reconstruction and preselection
 - Reconstruct final state particles and K_s⁰
 - Reconstruct B meson + perform vertex fit
- Apply Flavor tagger to get the B flavor

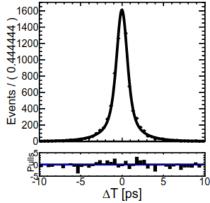


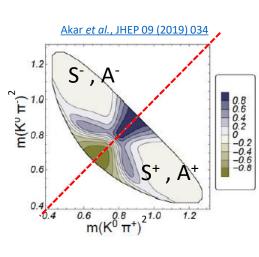

- Apply selection cuts on powerful variables
 - Continuum Suppression: to reduce the $e^+e^- \rightarrow q\bar{q}~(c\bar{c},s\bar{s},u\bar{u},d\bar{d})$ with a multivariate classifier
 - pion PID, m_{Kres} ., $m_{\pi\pi}$...

- Impact ~6% of events
- 3D fits: Simultaneous fit of m_{bc} , ΔE and Δt
 - Fit PDFs shapes for each contribution from MC
 - Fit complete distribution to extract A and S




K_s^0 ππγ analysis in Belle: Final 3D fit


• Fit the signal with the dedicated Belle resolution function


$$F_{\text{sig}}(\Delta t) = P_{\text{phys}} \otimes R_{\text{sig}}(\Delta t) \otimes R_{\text{tag}}(\Delta t) \otimes R_{\text{np}}(\Delta t) \otimes R_{\text{kin}}(\Delta t)$$

- Fit the 4 other types of background separately with various PDFs
 - Crossfeed, BB, continuum, rare decays
- Final three dimensional extended unbinned maximum likelihood fit:

CP violating parameters sensitivity estimated on 1 ab⁻¹ MC:

$$A = 0.07 \pm 0.10$$

 $S = -0.09 \pm 0.12$

From the last Belle measurement

$$A_{\text{eff}} = 0.05 \pm 0.18 \pm 0.06$$

 $S_{\text{eff}} = 0.09 \pm 0.27^{+0.04}_{-0.07}$

Competitive result

Fit with Dalitz separation $\mathcal{S}^+ = -0.17 \pm 0.24$

$$S^- = 0.03 \pm 0.24$$
.

First time estimation of the new parameters

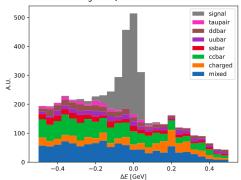
Data measurement planned for end of 2022

Outline

- Time-dependent CP violation (TDCPV) analysis on b \rightarrow s γ process
 - With Belle: on $B^0 \rightarrow K_s^0 \pi \pi \gamma$ using a new method to constrain the Standard model
 - With Belle II: on $K_s^0\pi\pi\gamma$ and $K_s^0\pi^0\gamma$ channels
 - With current Belle II data (190 fb⁻¹): rediscovery + BR measurement
 - Develop both analysis from scratch

- Upgrade of the vertex detector of Belle II
 - Development of new fully pixelated geometries

$K_s^{\ 0}\pi\pi\gamma$ and $K_s^{\ 0}\pi^0\gamma$ analysis in Belle II


Reconstruction and preselection

- Reconstruct final states particles and K⁰_S
 the B meson with a vertex fit
- Main challenge: Selection
 - Optimize the selection with $\frac{S}{\sqrt{S+B}}$ FOM with a few variables:
 - Multivariate classifier: remove dominant background $e^+e^- \rightarrow q\bar{q}~(c\bar{c},s\bar{s},u\bar{u},dd)$, trained on fastBDT
 - $m_{K_s^0\pi^0}$: reduce other K_{res} (& soft cut for $m_{K\pi\pi}$)
 - K_s^0 decay length significance: good K_s^0 selection
 - \mathbf{M}_{bc} : reduce continuum and $B\overline{B}$ background

> ~8% efficiency for $K_S \pi^+ \pi^- \gamma$ and $K_S \pi^0 \gamma$

- ΔE fit to estimate the signal yield
- Systematic uncertainties study
- Data/MC comparison first without then with the signal region
 - If everything is under control: Final ΔE fit on data and BR measurement!

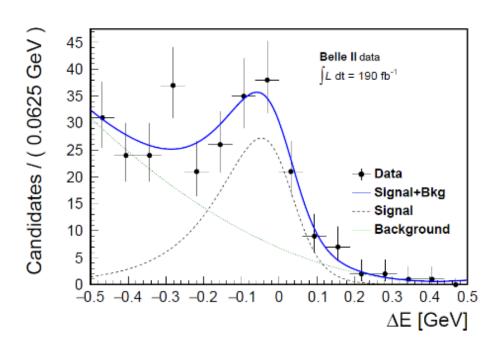
Background contribution for $K_s^0\pi\pi\gamma$ after the selection

	Efficiency systematics	$B^0 o K^0_{\scriptscriptstyle S}\pi^\pm\pi^\mp\gamma$	$B^0 o K_{\scriptscriptstyle S}^0 \pi^0 \gamma$
<u>e</u>	MC sample size (stat error)	0.2 %	
ab	MC generation	4.2 %	2.0 %
ت	pionID	0.2 %	-
es	Tracking	1.38 %	-
Ę:	π^0 reconstruction	-	5.5 %
.⊑	K_s^0 reconstruction	3.60 %	3.46 %
ta	π^0 veto	1.7 %	1.9 %
uncertainties table	γ selection	0.3 %	
	Continuum suppresion	3.0 %	
ב	Total efficiency	6.67 %	7.68 %
ω.			

Yields systematic

Fit bias	2.7 %	11.5 %
Number of $B^0\overline{B}^0$ pairs syst	2.9 %	6
f00 excetamatic	120	/_

 $B^0 \to K_s^0 \pi^{\pm} \pi^{\mp} \gamma$


Systematic

	$B^0 o K_S^0 \pi^{\pm} \pi^{\mp} \gamma$	$B^0 o K_{\scriptscriptstyle S}^0 \pi^0 \gamma$
Total	7.86 %	14.2 %

09/05/23

$K_s^0\pi\pi\gamma$ and $K_s^0\pi^0\gamma$ analysis in Belle II: unblinding

- $K_s^0 \pi \pi \gamma$: Continued by next student
- $K_s^0 \pi^0 \gamma$: Unblinding and BR measurement!

- Result presented at <u>Moriond 2022</u>
- arXiv published in June 2022
 [arXiv:2206.08280]
- First step toward the TDCPV measurement in Belle II

$$\mathcal{B}\left(B^0 \to K_s^0 \pi^0 \gamma\right) = (7.28 \pm 1.75(\text{stat}) \pm 1.03(\text{syst})) \times 10^{-6}$$

Compatible with known value

13

Conclusion

- Time-dependent CP violation (TDCPV) analysis on b \rightarrow s γ process
 - With Belle: on $B^0 \rightarrow K_s^0 \pi \pi \gamma$ using a new method to constrain the Standard model
 - With Belle II: Rediscovery of $K_s^0 \pi \pi \gamma$ and $K_s^0 \pi^0 \gamma$ channels on data

- Upgrade of the vertex detector of Belle II
 - Development of new fully pixelated geometries

Now postdoc at KEK

Tristan Fillinger

- Precise measurement of $B \to \tau \nu$ with SL FEI
- Upgrade of the vertex detector with SOI/DuTiP technology

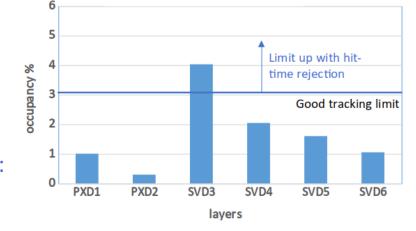
Thank you for your attention

Tristan Fillinger

09/05/23

Outline

Tristan Fillinger


- Time-dependent CP violation (TDCPV) analysis on b \rightarrow s γ process
 - With Belle: on $B^0 \rightarrow K_s^0 \pi \pi \gamma$ using a new method to constrain the Standard model
 - With Belle II: on $K_s^0 \pi \pi \gamma$ and $K_s^0 \pi^0 \gamma$ channels

- Upgrade of the vertex detector of Belle II
 - Development of new fully pixelated geometries
 - Implementation in the Belle II software
 - Performance comparisons

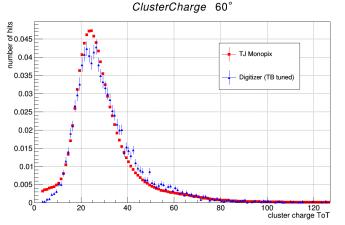
Implementation of the upgrade

Why upgrade?
 Current occupancy extrapolation

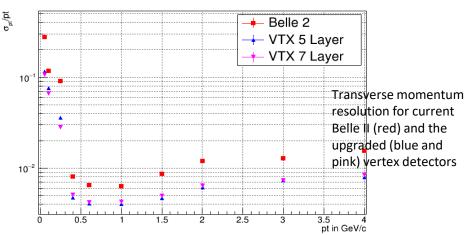
Current occupancy extrapolation at peak luminosity close to a limit

- Opportunity to upgrade the vertex detector in 2026:
 - Better physics performances
 - Better background handling
 - > Fully pixelated and fast detector (CMOS technology)
- Can Belle II benefit from a fully pixelated vertex detector?
 - Implement simulation of CMOS sensor
 - Implement new geometries

5-layer geometry



7-layer geometry


Implementation of the upgrade

Tuning of the digitizer to reproduce the performances of the technology candidate

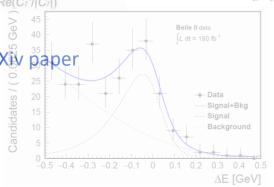
Cluster charge in basf2 (blue) and the testbeam result (red)

- Connect the geometry to the tracking algorithm
- Benchmarking the new configurations:
 - According to MC:
 - Better tracking performances
 - More robust to background
 - Lower occupancy

- I presented the results in the XXVII Cracov EPIPHANY Conference and it led to a <u>proceeding</u>
- Foundation of the vertex detector upgrade program of Belle II

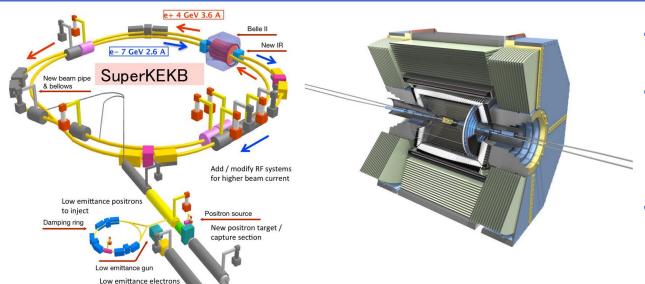
Conclusion and perspective

Work on the upgrade of the vertex detector


- Implementation in Belle II simulation finished
- Allowed tracking and physic performances studies
- Input for the conceptual design report for 2023

TDCP analysis with Dalitz separation in Belle

- First A and S sensitivity estimation with the new analysis done on MC
- Study ongoing to estimate all the systematics o.o.
- Last step before measurement on data


BR measurement in Belle II

- First step toward the TDCPV measurement with Belle II
- BR measurement for $K_s\pi^0\gamma$ shown at conferences and arXiv paper
- TDCPV study planned for 2023

-0.5

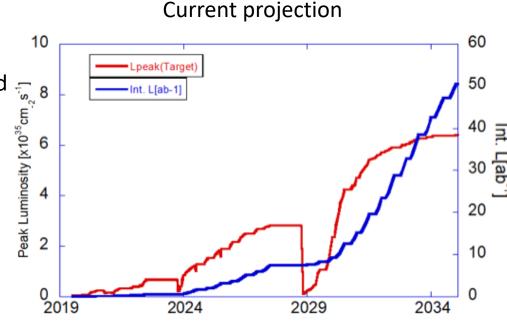
SuperKEKB collider and Belle II

- Started in 2019
- Positron (7 GeV) Positron (4 GeV)
 collider
- B, charm and τ factory

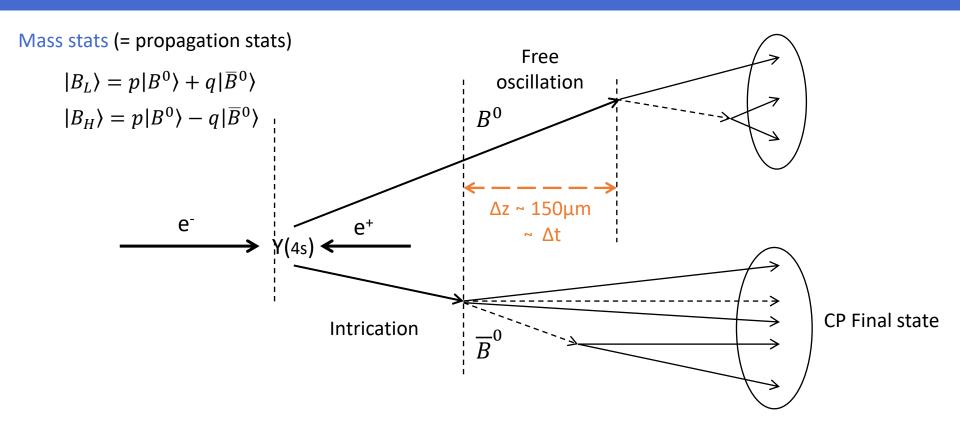
Today

- Peak luminosity: 2.8·10³⁴ cm⁻² s⁻¹
- Int. luminosity: ~ 166 fb⁻¹ of data collected

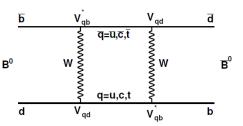
Goal

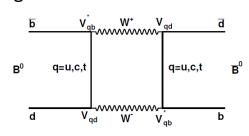

- Peak luminosity: 6·10³⁵ cm⁻² s⁻¹
- Int. luminosity: 50 ab⁻¹

to inject


Belle Int. luminosity: 1 ab⁻¹

Long shutdown in 2026:

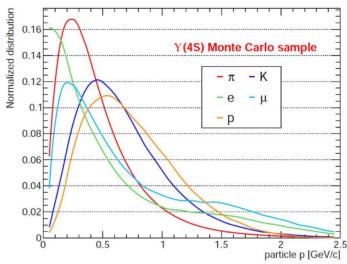

> Opportunity for upgrade of detector

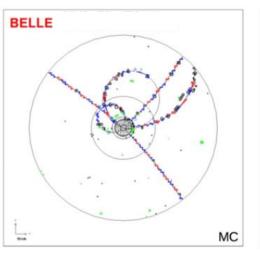


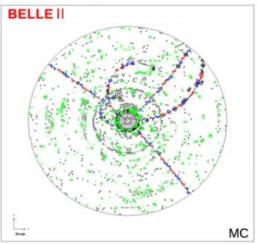
Time dependant CP violation (TDCPV)

Feynman Diagram describing the oscillations

Asymmetry

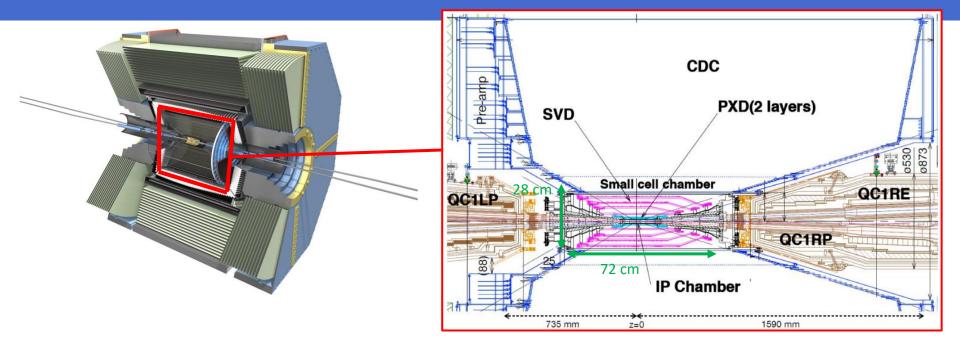

$$\mathcal{A}_{CP}\left(\Delta t\right) = \frac{\Gamma\left(B_{\text{tag}=B^{0}}\left(\Delta t\right) \to f_{CP}\right) - \Gamma\left(B_{\text{tag}=\bar{B}^{0}}\left(\Delta t\right) \to f_{CP}\right)}{\Gamma\left(B_{\text{tag}=B^{0}}\left(\Delta t\right) \to f_{CP}\right) + \Gamma\left(B_{\text{tag}=\bar{B}^{0}}\left(\Delta t\right) \to f_{CP}\right)}$$


Challenge of tracking at Belle II


- Average track multiplicity:
 - 11 physics tracks.
- Similar momentum ranges and distributions.
- Low momentum tracks
 - > multiple scattering, curling tracks.

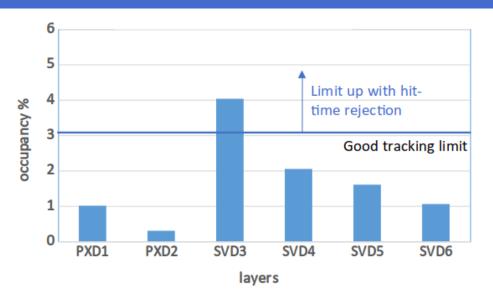
Particle types visible in Tracking between typical Y(4S) event

Particle type	Average fraction
π^{\pm}	72.8%
K^{\pm}	14.9%
e^{\pm}	5.8%
μ^{\pm}	4.7%
p^{\pm}	1.8%



- Sizeable beam-induced background.
- Occupancy dominated by background

Belle II detector


Challenges addressed by dedicated detectors:

- Central drift chamber CDC
- Vertex detector VXD:
 - Four double-sided silicon strip detectors SVD
 - Two pixelated vertex detectors PXD

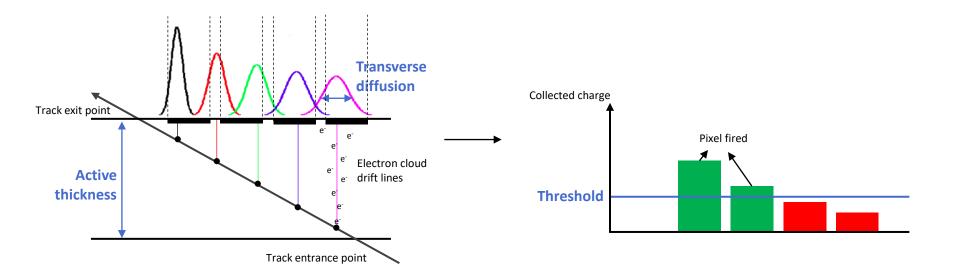
Track finding

Precise vertices measurement

Vertex detector upgrade?

Current occupancy extrapolation at peak luminosity (background hard to extrapolate) close to a limit (above 3-5% occupancy, serious performance degradation) + large uncertainty on background from continuous injection.

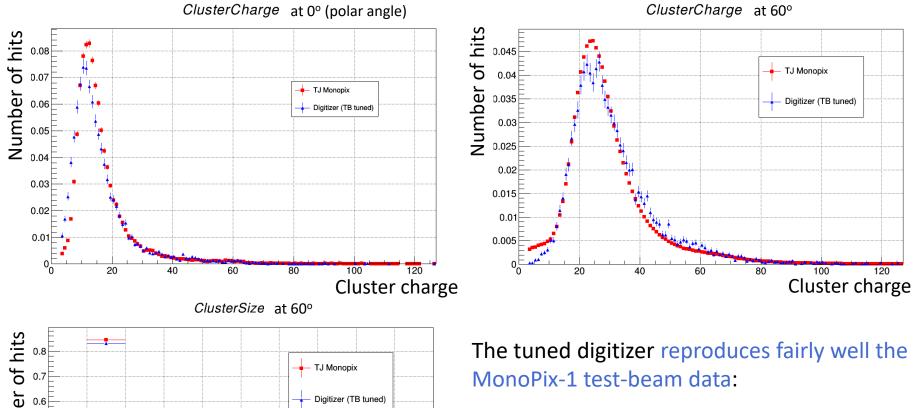
- Opportunity to upgrade the vertex detector in 2026:
 - Better performances
 - Better background handling
 - Fully pixelated and fast detector (CMOS technology)
- $occupancy \propto \frac{t_{integration}}{granularity}$ pixel


fast

Goals:

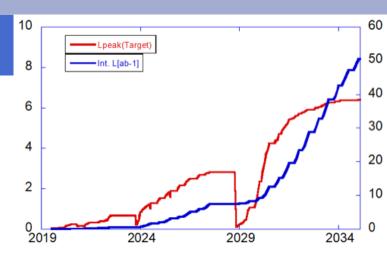
- Use current Belle II software (basf2)
- Implement new technologies and geometries
- Develop a full simulation
- Show that Belle II can benefit from a fully pixelated vertex detector

Tuning of the digitizer


• When a particle goes through the silicon layer, it creates charge diffusion inside the depleted width. Those charges are then converted to digits to process them.

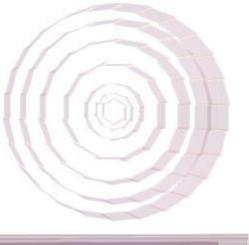
- Few parameters should be adjusted: the integration time window, the active thickness, the transverse diffusion or the hit threshold.
- Those parameters have been tuned to match a test-beam experiment made at DESY with
 TJ MonoPix-1 [1] chips, predecessor of TJ MonoPix-2 which is a good candidate for the
 upgrade.

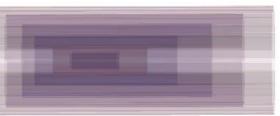
 [1] https://indico.cern.ch/event/884089/


MonoPix-1 simulation results: clusters

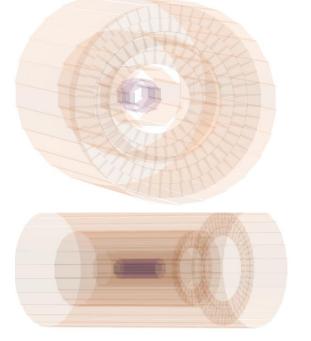
- Good agreement with cluster charge and cluster size
- resolution reproduced within 20%
- > Digitizer validated for the full simulation

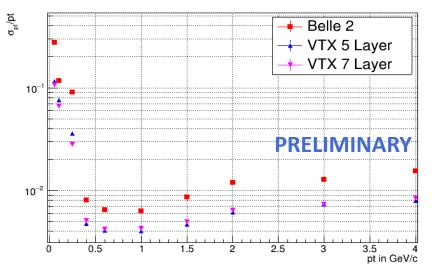
New Geometries


- 2026: Replacement of the current VXD for:
 - Better background handling
 - Better performances
 - All layers contributing to tracking
- Fully pixelated detector (CMOS technology)

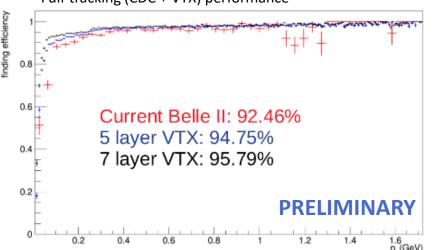

3 new "VTX" (Vertex) geometries implemented and connected to existing tracking:

CMOS 5 layer


CMOS 7 layer



CMOS 5 layer + forward discs


Performance

Transverse momentum resolution vs p_t

Finding efficiency vs p_t

Full-tracking (CDC + VTX) performance

Occupancy

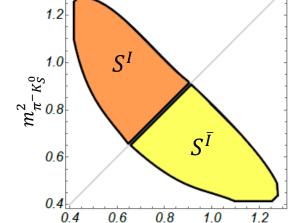
Average VTX layer 1 occupancy: 0.0016%
 > 3 order of magnitude lower than VXD

Tracking efficiency

	Background x 1	Background x 5
Current SVD	0.961 —	→ 0.907
5 layer	0.984	0.979
7 layer	0.987	0.978

- Better tracking performances at low momentum range
- Very low occupancy in innermost VTX layers
- Robust to the increase of the background

TDCPV with Dalitz separation


Channels chosen for the TDCPV analysis: $B^0 \to K_s^0 \pi^0 \gamma$ (Belle II) and $B^0 \to K_s^0 \pi^+ \pi^- \gamma$ (Belle + Belle II)

$$B^0 \to (K^*(892)^0 \to \pi^0 K^0_S) \gamma \quad \text{ CP final state } \\ \hspace{2cm} \to \text{Measure \mathcal{S} and A directly}$$

$$B^0 \to K_{\text{res}} \gamma \to \pi^+ \pi^- K_s^0 \gamma$$
 $K_1(1270), K_1(1400)$
 $K^*(1410), K^*(1680)$
 $K_2^*(1430)$

& $B^0 \to K_{\rm res} \gamma \to (\rho^0 K_s^0) \gamma \to K_s^0 (\pi^+ \pi^-) \gamma$, CP final stat $B^0 \to K_{\mathrm{res}} \gamma \to (K^{*+}\pi^-)\gamma \to (K_S^0\pi^+)\pi^-\gamma, \\ B^0 \to K_{\mathrm{res}} \gamma \to ((K\pi)_0^+\pi^-)\gamma \to (K_S^0\pi^+)\pi^-\gamma, \end{bmatrix} \text{ Non-CP final stat}$

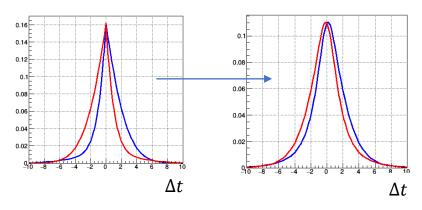
> Dilution factor: $\mathcal{D} = \frac{S_{\pi^+\pi^-K_S^0\gamma}}{S_{\alpha^0K_S^0\gamma}}$ Obtained with $B^+ \rightarrow K^+\pi^+\pi^-\nu$ analysis

- \rightarrow Measure **S** and **A** directly considering the dilution factor
- → Use new method from Simon AKAR et al. which separate the Dalitz plane to gain more information on C_7 and C'_{7} Akar et al., JHEP 09 (2019) 034

New observables: $S_{\pi^{+}\pi^{-}K_{S}^{0}\gamma}^{+} = S^{I} + S^{\bar{I}}$ $S_{\pi^{+}\pi^{-}K_{S}^{0}\gamma}^{-} = S^{I} - S^{\bar{I}}$

TDCP asymmetry, experimental function

- Various contribution:
 - Wrong flavor
 - Continuum events

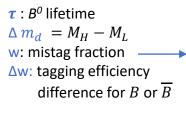

- Other (non signal) B
- Signal B but miss-reconstructed

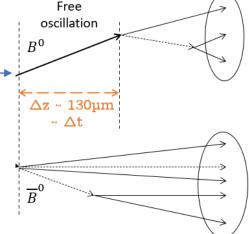
• Signal Δt experimental function

$$P(\Delta t, q) = f_{sig} \frac{e^{-|\Delta t|/\tau}}{4\tau} * \left[1 - q\Delta w + q(1 - 2w)(A\cos\Delta m_d\Delta t + S\sin\Delta m_d\Delta t)\right] \otimes R_{res}$$

$$+\left(1-f_{sig}\right)P_{bkg}$$

Resolution function R_{res}:
 Convolution of various resolutions


Measured:


 f_{sig} : Signal fraction

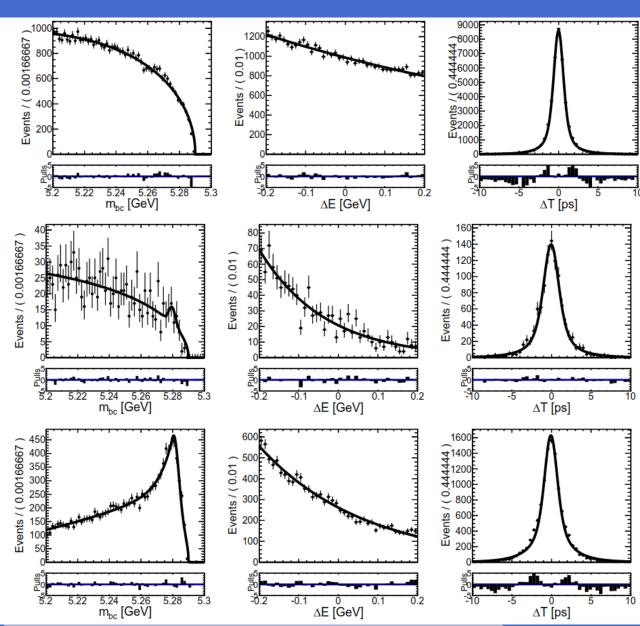
 q_{tag} : flavor of the B (0 or 1)

 Δt : Time difference between the decay of the B

• Constant:

3D fit – Determination of PDFs with MC

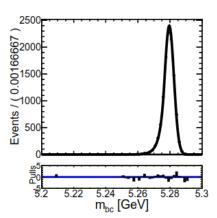
Continuum

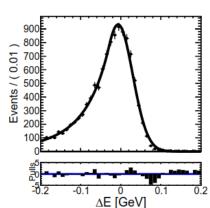

- $u\bar{u} d\bar{d} s\bar{s}$
- cc̄

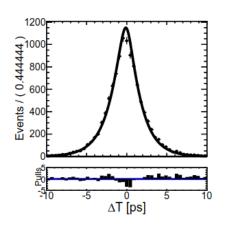
BB bkg

- $B^0 \bar{B}^0 + B^+ B^-$
- Without our signal

Rare bkg

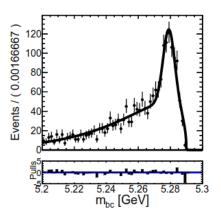

- Enhanced rare b decays
- Without our signal

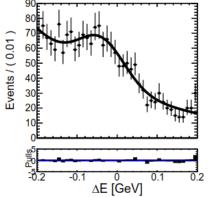


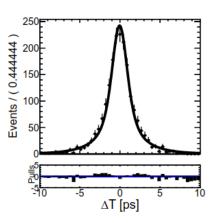

3D fit – Determination of PDFs with MC

Signal

- Private Signal MC
- Truth matched
- 2.28 ± 0.02 % efficiency







Self-Crossfeed

- Not all tracks are from the signal side
- Private Signal MC
- Without our signal

Dataset used

- MC: 700 fb⁻¹ MC14ri_d and 200 fb⁻¹ MC14ri_a sample
 - $B^0\bar{B}^0$, B^+B^- , $c\bar{c}$, $s\bar{s}$, $u\bar{u}$, $d\bar{d}$, $\tau\tau$
 - 200 fb⁻¹: Same size as the final Data dataset, used to estimate expected yields
 - 700fb⁻¹: Used to optimize the selection, determine the fit functions and background rejection
- MC Signal only samples:
 - 2M events
 - $B \rightarrow K^{*0} \gamma \rightarrow K_s^0 \pi^0 \rightarrow \pi^+ \pi^-$
 - Used to calculate the signal efficiency

•	Data: 190 fb ⁻¹	
	proc12 to bucket25	

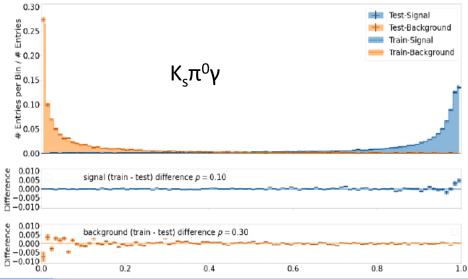
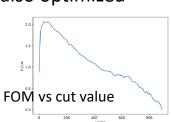

	_		
Run	Experiment	Dataset	Integrated luminosity
$2019~\mathrm{a/b/c}$	7-10	proc12 - chunk1	$8.6 \; {\rm fb}^{-1}$
2020 a/b	12	proc12 - chunk2	54.6 fb^{-1}
2020 с	14	bucket16	10.7 fb^{-1}
2020 с	14	bucket16b	$5.7 \; {\rm fb^{-1}}$
2021 a/b	16	bucket17	10.3 fb^{-1}
2021 a/b	17	bucket18	10.7 fb^{-1}
2021 a/b	18	bucket19	$8.9 \; {\rm fb}^{-1}$
2021 a/b	18	bucket20	9 fb^{-1}
2021 a/b	18	bucket21	$8.7 \; {\rm fb^{-1}}$
2021 a/b	18	bucket22	17.6 fb^{-1}
2021 a/b	18	bucket23	$18 \; {\rm fb^{-1}}$
2021 a/b	18	bucket24	11.2 fb^{-1}
2021 a/b	18	bucket25	15.7 fb^{-1}
		Total	$189.26~{ m fb}^{-1}$

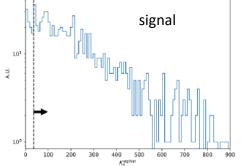
TABLE II: List of the various datasets used in this analysis.

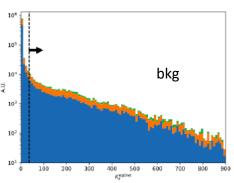
Analysis workflow

Continuum Suppression (CSMVA)

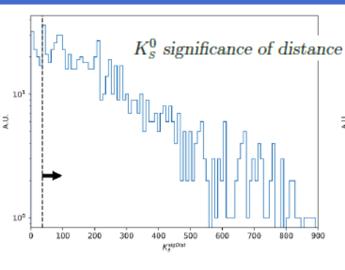
- Trained with BASF2 fastBDT with standard settings
 - 30 continuum variables: R2,cosTBTO, cosTBz, thrustOm, thrustBm, Kakuno-Super-Fox-Wolfram moments, CLEO cones
- Training sample:
 - 60k evts from the 2M with signal truth matching + 60k continuum evts from 700fb⁻¹
- Test sample:
 - 30k evts 2M + 30k 700fb⁻¹
- Good discrimination between signal and continuum

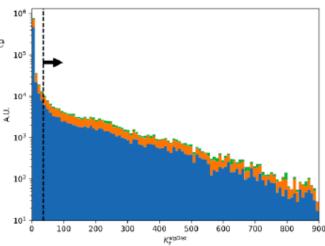

Selection strategy

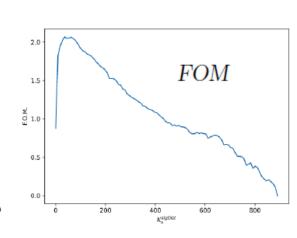

Selected variables:

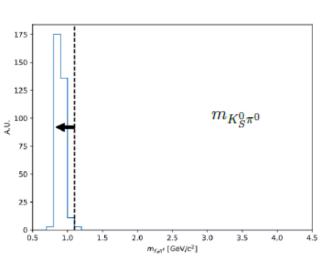

- CSMVA output: reduce continuum
- $m_{K_{\rm c}{}^0\pi^0}$: reduce other ${\sf K}_{\sf res}$
- K_s^0 decay length significance: good K_s selection, further reduce continuum
- \mathbf{m}_{bc} : reduce continuum and $B\overline{B}$ background
- Figure of merit (FOM): $\frac{S}{\sqrt{S+B}}$
- In the signal range: $5.26 < m_{hc} < 5.3 \text{ GeV/c}$; $-0.2 < \Delta E < 0.1 \text{ GeV}$

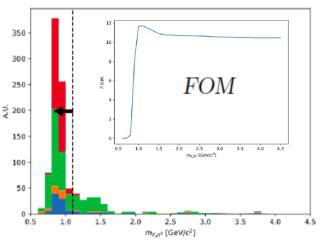
• Selection procedure:

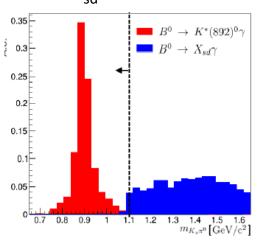

- 1. For each variable, the FOM is measured as a function of the variable cut values and the one with the highest FOM is chosen.
- 2. All found cuts are applied, then a new variable is optimized the same way
- 3. Repeat until no variable left
- The order of the variables is also optimized

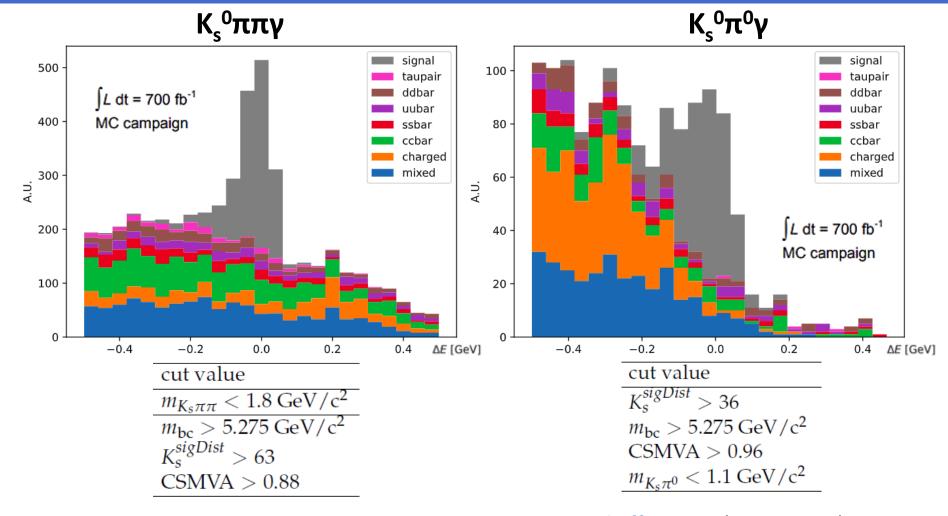






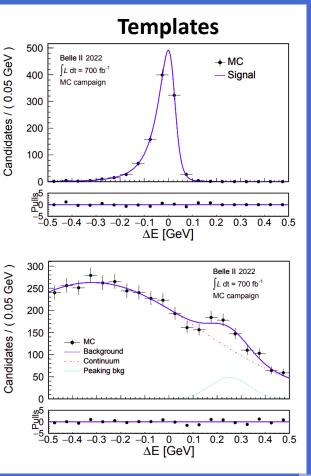

Selection strategy – $K_s\pi^0\gamma$ - example

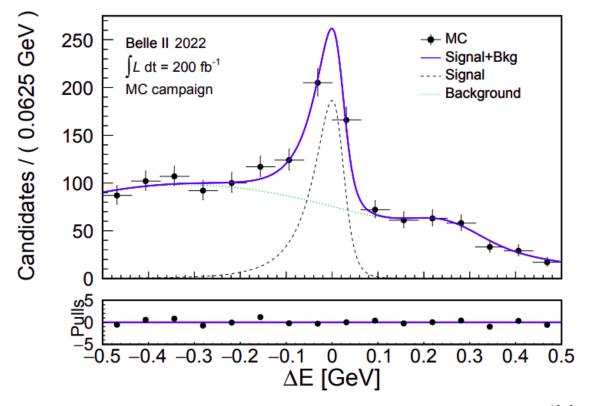




m_{KSpi0} cut removes the X_{sd} resonnance

Contributions after the selection



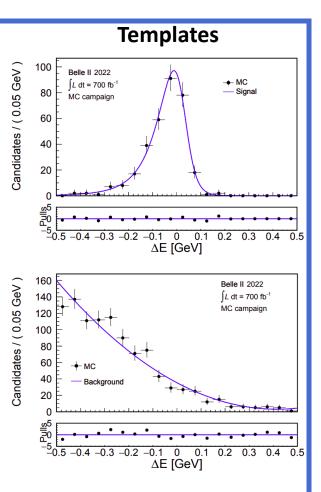

- Signal efficiency: (8.29 ± 0.02)%
- Significance from 4 to (22 ± 0.5)
- Signal efficiency: (8.69 ± 0.02)%
- Significance from 2 to (12 ± 0.5)

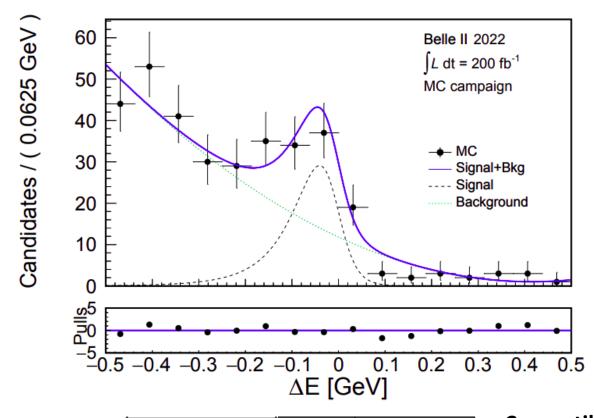
$\Delta E \text{ fit } - K_s^0 \pi \pi \gamma$

- Shape parameters fixed from 700 fb⁻¹ sample
- Yields left free
- $f_{peakingBkg}$, μ_{sig} and σ_{sig} free

- ΔE distribution of signal+bkg
- 200 fb⁻¹ (~ final data sample size)

Results


	Signal	Background
MC truth yields	316	1117
fit yields	292 ± 31	1140 ± 40


Compatible yields, μ_{sig} and σ_{sig}

$\Delta E \text{ fit} - K_s^0 \pi^0 \gamma$

- Bkg shape parameters fixed from 700fb⁻¹ sample
- Yields left free
- μ_{sig} and σ_{sig} free

- ΔE distribution of signal+bkg
- 200 fb⁻¹ (~ final data sample size)

Results

	Signal	Background
MC truth yields	75	264
fit yields	67 ± 15	272 ± 21

Compatible yields, μ_{sig} and σ_{sig}

Systematic uncertainties study and BR calculation

$$\mathcal{B} = \frac{N}{2\varepsilon f^{00} N_{B\overline{B}}}$$

- N: yield extracted from the ΔE fit
- ε: efficiency of the selection

$$\epsilon(B^0 \to K_s^0 \pi^+ \pi^- \gamma) = (8.566 \pm 0.571)\%$$

 $\epsilon(B^0 \to K_s^0 \pi^0 \gamma) = (8.669 \pm 0.666)\%$

- f^{00} : BR of Y(4S) going to $B^0\overline{B^0}$ (from PDG)
- $N_{B\overline{B}}$:estimated number of $B\overline{B}$ pairs produced in the data sample

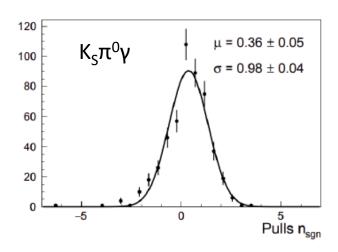
Efficiency systematics	$B^0 \to K_S^0 \pi^+ \pi^- \gamma$	$B^0 \to K_S^0 \pi^0 \gamma$	
MC sample size (stat error)	0.2 %	0.2 %	
MC generation	4.2 %	2.0 %	
pion PID	0.2 %	-	
Tracking	1.38 %	-	
π^0 reconstruction	-	5.5 %	
$K_{\rm S}^0$ reconstruction	3.60 %	3.46 %	
π^0 veto	1.7 %	1.9 %	
γ selection	0.3 %		
Continuum suppresion	3.0 %		
Total efficiency	6.67 %	7.68 %	

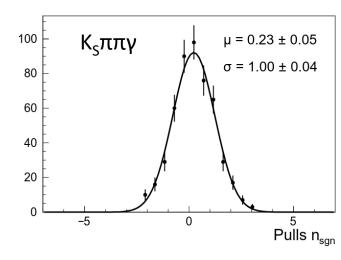
Yields systematic	$B^0 \rightarrow K_S^0 \pi^+ \pi^- \gamma$	$B^0 \to K_S^0 \pi^0 \gamma$
Fit bias	2.7 %	11.5 %

Number of $B^0\overline{B}{}^0$ pairs syst	2.9 %

f^{00} systematic	1.2 %

	$B^0 \to K_{\rm S}^0 \pi^+ \pi^- \gamma$	$B^0 o K_{\scriptscriptstyle S}^0 \pi^0 \gamma$
Total	7.86 %	14.2 %


Fit stability


- 500 x 200 fb⁻¹ MC datasets created by bootstrapping the initial 700 fb⁻¹
- Fit all the 500 datasets
- Plot pulls:

$$n_{\text{sgn }diffs} = n_{\text{sgn }fit} - n_{\text{sgn }true}$$

$$n_{\text{sgn }pulls} = \frac{n_{\text{sgn }diffs}}{n_{\text{sgn }fit-error}}$$

- Over estimation of the signal, taken into account as a systematic of 11.5% for $K_S^0\pi^0\gamma$ and 2.7% for $K_S^0\pi\pi\gamma$
- Leading systematic for K_S⁰π⁰γ
 > We tried a lot of different fit functions and to fit the peaking B⁺B⁻ background but no improvements were observed

