2023 Joint Workshop of FKPPL and TYL/FJPPL Ochanomizu University, Tokyo, Japan (Online) 9-11 May 2023

FAZIA French-Korean Collaboration

Byungsik Hong (Korea University) and Nicolas Le Neindre (LPC Caen) for **FAZIA-FKC**

Brief history of French-Korean Collaboration in FAZIA

- Before 2019:
 - The Korean group (part of LAMPS Collaboration) was designing the Si-CsI telescope for the lowenergy (a few tens MeV per nucleon) nuclear collision experiments at RAON, which is the new radioactive-ion beam facility being built in Korea.
 - The International Advisory Committee of RAON reviewed the status of the detector development and suggested to collaborate with FAZIA in Europe, because it had been operating the most advanced Si-CsI detector system for nuclear physics.
 - We started the discussion with some FAZIA members to join the Collaboration in various Conferences and meetings.
 - In 2019
 - A group of Korean researchers visited GANIL in May and participated in the E789 experiment.
 - Three professors (B. Hong @ Korea Univ., M. Kweon @ Inha Univ., I. Hahn @ Ewha Womans Univ.) attended the FAZIA Workshop at GANIL in September 2019 and presented the application to officially join the Collaboration.
 - MoU
 - The Center for Extreme Nuclear Matters (CENuM), representing the whole Korean group, signed on the MoU in 2020.
 - Signed the new MoU for 2023-2027

FAZIA: a charged-particle detector system for heavy-ion collision studies at intermediate beam energies

Collaboration status

- 5 countries (France, Italy, Korea, Poland, Spain)
- \sim 30 physicists & \sim 10 students

One FAZIA block consists of 16 $Si_1 + Si_2 + CsI$ telescopes with a cross-section of 2X2 cm².

- Si₁(nTD): 300 μ m thick, Si₂(nTD): 500 μ m thick, CsI: 10 cm thick (photodiode readout)
- Refining Pulse-Shape Analysis (PSA) techniques for identification in a single detector
- Excellent isotopic resolution for charged particles in heavy-ion collisions at the beam-energy range from 15 to 100 AMeV, which is mandatory for the radioactive ion beam experiments.

• Charge identification tested up to Z=54 & mass discrimination up to $Z\sim26$

Scientific goal

 Detailed understanding of the nuclear Equation of State (EOS) and the nuclear symmetry energy for both microscopic (nuclei) and macroscopic (neutron stars) objects

Physics experiments

- E789 (2019): Isospin transportation and the density dependence of the symmetry energy
- E818 (2022): Characteristics of the warm dense nuclear matter in low-density region

Future

- Extension of the particle identification capability
- Exploration of the flexible installation scheme in the limited space of vacuum chamber
- Application of the modern technology to the next generation detectors and FEE
- Manufacturing more FAZIA blocks in Europe and Korea for more comprehensive measurements

Goal of FAZIA-FKC

- R&D and production of new FAZIA blocks (today's focus)
- Analysis on the directed and elliptic flow using INDRA and FAZIA data set

Participants

	Fre	ench side	Korean side			
Name	Position	Affiliation	Name	Position	Affiliation	
<u>Leader:</u> Le Neindre, Nicolas	CR	LPC Caen CNRS IN2P3 & University	<u>Leader:</u> Hong, Byungsik	Professor	Korea University (CENuM)	
Bonnet, Eric	CR	Subatech Nantes CNRS IN2P3	Kweon, Minjung	Professor	Inha University (CENuM)	
Borderie, Bernard	Emeritus	IPNO Orsay CNRS IN2P3 & University	Kim, Jiyoung	PostDoc	Korea Univ. (CENuM) & Inha Univ.	
Bougault, Rémi	DR	LPC Caen CNRS IN2P3 & University	Lee, Jong-Won	PostDoc	Korea University (CENuM)	
Chbihi, Abdou	DR	GANIL	Nam, Seon Ho	Student	Korea University (CENuM)	
Fable, Quentin	Postdoc	L2IT Toulouse CNRS IN2P3	Park, Jeonghyeok	Student	Korea University (CENuM)	
Frankland, John	CR	GANIL	Kim, Giyoung	Student	Inha University (CENuM)	
Genard, Tom	Student	GANIL	Hahn, Kevin Insik	Professor	CENS, IBS	
Gruyer, Diego	CR	LPC Caen CNRS IN2P3 & University	Kim, Sunji	PostDoc	CENS, IBS	
Lemarié, Julien	Student	GANIL				
Lopez, Olivier	DR	LPC Caen CNRS IN2P3 & University				
Rebillard, Alex	Student	LPC Caen CNRS IN2P3 & University				
Vient, Emmanuel	EC	LPC Caen CNRS IN2P3 & University				

Synopsys TCAD (Technology Computer Aided Design)

Simulation setup for PiN sensor

	Н	alf of cross se	$-V_{0}$,	reverse bias voltage						
Thickness: 720 μm		1cm								
Channel stop	Guard ring	Anode				- Þ				
			Input parameter							
			Temperature	300 K			Doping density			
			Bias voltage	$0 \sim -700 \text{ V}$			P ⁺ Boron			
			Carrier	electron	$1 \times 10^{-4} s^{-1}$		N ⁻ Phosphorus			
Cathada			lifetime	hole	3×10 ⁻⁴ s ⁻¹		N⁺ Phosphorus			
Cathode										

Edge of silicon sensor

TCAD simulation

Sensor fabrication

Part of the silicon process flow

Sensor fabrication was done at ETRI

Processing results at ETRI

Characterization

 About 10 times higher leakage current was observed with the barrier metal + aluminum structure

- Breakdown voltage point is close to -600 V
- Enough to reach full depleted voltage

 $W_{scr} = 0.53 \sqrt{\rho V_0}$ $\succ V_0 = 400 V$

Preparation of chip assembly

Quartetto (chip frame)

- 4 chips mounted in each quartetto frame
- Backside of the sensor connected for grounding
- Wire-bonding connection to apply the reverse-bias voltage to the sensors
- Successful production of the required components in Korea
- We are working on the production of the first Korean modules.

R&D of Front-end electronics board

- Two prototype FEBs were produced by the Korean vendor, NOTICE.
 - We started with the original design of the FAZIA FEB.
 - The out-of-dated digital parts were replaced (For example, FPGA: Vertex-5 \rightarrow KINTEX-7).
 - New FPGA chips \rightarrow Development of the new VHDL code
 - Performance test at GANIL and INFN-Firenze: No major issue
 - Plan to design the second prototype, employing one FPGA

 Analog part: To amplify analog signals from the detector

- Digital part:
 Signal processing
 (analog to digital conversion)
- Conversion part:
 Power distribution
 Application of the bias voltage

Analysis of collective flow

- Data sets
 - INDRA: ^{129,124}Xe + ^{124,112}Sn @ 100 AMeV
 - FAZIA+INDRA: ^{58,64}Ni + ^{58,64}Ni @ 32 and 52 AMeV

Plan in 2023-2024

- Set up the Lab. testing system with radiation sources
 - Vacuum chamber and cooling system are ready.
 - Test with proton beams at KOMAC
 - Radiation hardness of sensors
- Next round of sensor fabrication
 - Improve the design for better I-V characteristics
 - Thinner(~150 μ m) and thicker(~1 mm) sensors
- Assembly of complete FAZIA module
 - CsI and other necessary parts for assembly will be provided by FAZIA.

Water cooling machine Vacuum chamber

Merci Beaucoup. 감사합니다. どうもありがとうございます. Thank you very much.