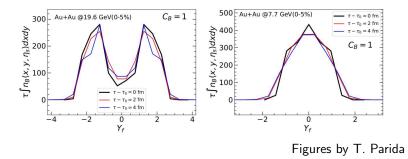
The BES way to neutron stars

Sourendu Gupta

Workshop on Highly Baryonic Matter at RHIC-BES and Future Facilities beyond the Critical Point towards Neutron Stars Tsukuba (April 30, 2023)

伺下 イヨト イヨト

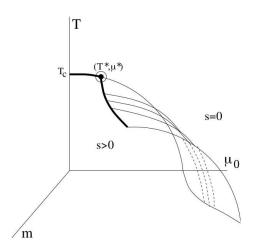


・ロト ・部ト ・ヨト ・ヨト

3

Baryon stopping and BES

The QCD coupling is strong at low energy: gives rise to hadron physics. At high energy the QCD coupling becomes weak: parton physics dominates. Large effects on baryon stopping. Possibly significant effects on baryon fluctuations.


(Some details of the set up: Chatterjee's talk tomorrow)

Sourendu Gupta The BES way to neutron stars

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Chiral limit of QCD misses nuclear physics

Since binding energy of nuclei \ll nucleon mass or pion mass, chiral expansions do not see nuclear physics. Is the chiral limit of this phase diagram correct?

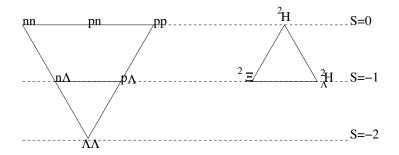
Unreal: chiral limit of QCD

Pions are massless, so nuclear force is long-ranged. Therefore there is **no liquid drop model of nucleus**.

Very likely no deuteron. Nucleosynthesis chain disrupted.

Proton is more massive than neutron due to QED corrections.

$$M_p - M_n \stackrel{?}{=} 0.58 \pm 0.16 \,\, {
m MeV}$$


Gasser, Leutwyler, Rusetsky (arxiv:2003.13612) Either no β decay, otherwise $p \rightarrow ne^+\nu_e$.

If $M_p > M_n + m_e$ then **pure neutron stars**: charge neutrality requires e^- but p weak decays to give e^+ , annihilates until all protons have decayed, leaving only neutrons.

・ 同 ト ・ ヨ ト ・ ヨ ト

Real: hyper-nuclear physics

Start with an SU(3) triplet of baryons: $\overline{\mathbf{3}} = (p,n, \Lambda)$, like the Sakata model (1956). Dibaryons irreps of SU(3): $\overline{\mathbf{3}} \times \overline{\mathbf{3}} = \overline{\mathbf{6}} + \mathbf{3}$.

² \equiv stands for Xenosium (from the Greek $\xi \epsilon \nu o \zeta$ for stranger). Likely decay mode: ² $\equiv \rightarrow (p\pi^-)(pe\overline{\nu}_e)$. Is the neutral ² $\equiv (n\Lambda)$ bound or free? Implications for particle-nuclear physics.