Study of in-medium modification of φ mesons inside the nucleus through K⁺K⁻ decays

Informal JAEA Workshop "Exotic hadrons in vacuum & matter" 2023/3/2, ASRC

Hiroyuki Sako for E88 Collaboration

Contents

- 1. Introduction and goals
- 2. Experimental design and plan
- 3. Detector R&D status
- 4. Summary

J-PARC E88 Collaboration

- H. Sako (Spokesperson), S. Sato (ASRC, JAEA)
- K. Aoki, Y. Morino, K. Ozawa (KEK/J-PARC)
- W. C. Chang, M. L. Chu (Academia Sinica, Taiwan)
- T. Chujo, S. Esumi, Y. Miake, T. Nonaka (Univ. of Tsukuba)
- M. Inaba (Tsukuba Univ. of Technology)
- M. Naruki (Kyoto Univ.)
- T. Sakaguchi (BNL)
- T. N. Takahashi, S. Yokkaichi (RIKEN)

Study of $\boldsymbol{\varphi}$ meson in the nucleus

Goals

- To study in-medium modification of $\boldsymbol{\phi}$ mesons in cold nuclear matter
- The mass shift of ϕ meson is sensitive to $\langle s\bar{s} \rangle$ condensate in finite density

Experimental status

- No difference of BR betw. φ→e+e- and K+K- in A+A at SPS-CERES (PRL96, 152301 (2006))
- No φ mass shift in φ→ K+K- in γ+A collisions (LEPS) (Ishikawa, PLB 608 (2005) 215)
- Only in p+A (KEK-E325), low mass tail in φ→e+eobserved (E16 will measure with high statistics)

ALICE femtoscopy

- $p-\phi$ momentum correlations are observed in Pb+Pb at ALICE
- Attractive interaction between p and ϕ
- PRL127 172301 (2021)

Comparison of $\phi \rightarrow K+K-$ and $\phi \rightarrow e+e-$

KEK-E325 result ($\phi \rightarrow e + e -$) e^+e^- spectra of ϕ meson (divided by $\beta\gamma$) $1.75 < \beta \gamma$ (Fast) βγ<1.25 (Slow) 1.25<βγ<1.75 Interfe.7MeV/c²] 00 counts/18.7MeV/c² С С С 60 520 100 20 χ²/ndf=63/50 γ²/ndf=46/50 /1101-30/3 countartills.7MeV/c Cu Cu Си 8 200 50 100 ^{/2}/ndf=43/50 ²/ndf=56/50 1.1 1.1 1,2 [GeV/c²]

 E325 observed low mass tail at βγ<1.25 in p+Cu

17

E325 $\phi \rightarrow K^+K^-$ results

- No mass shift observed within statistical uncertainties.
- E325 has no KK data point at βγ<1.25, where low mass tail for ee observed
- →We will measure this data point with high statistics.

E325 $\phi \rightarrow K+K-$ Results (A-dependence of yields)

- $\sigma(A) = \sigma_1 A^{\alpha}$
- σ : ϕ production cross section
- A : index of A scaling (w/ C and Cu)

E325

- Suggests α (KK) > α (ee) at low $\beta\gamma$
- \rightarrow due to KN FSI?
- However, statistical significance not enough
- No KK data point at $\beta\gamma$ <1.25
- ⇒E88 will clarify the difference

Transport model development for $\phi \rightarrow KK$

- HSD model developed for $\phi \rightarrow KK$ calculations
 - P. Gubler (JAEA), S. H. Lee (Yonsei Univ.), E. Bratkovskaya, T. Song (Frankfurt U./GSI)
 - Hadron-string cascade (HSD) model in the energy range from GSI to SPS
- KN interaction based on chiral unitary model including off-shell effects
- $K \pm$ in-medium modified spectral function
 - At high density, K- mass peak decreases and width increases
 - K+ mass increases due to repulsive potential of 20-30 MeV, while the width remains narrow
- Scattering and absorption of $K \pm$ in nucleus (e.g. to $p\Sigma$)
- ϕ spectral function of Breight-Wigner shape
- Mass shift of $\Delta m = -34 \text{MeV} \rho/\rho_0$ (based on KEK-E325)

K- spectral function

T. Song et al, PRC103 044901 (2021)

Model calculations of $\phi \rightarrow K+K-$ in p+Cu

- FSI effect is 10% level
- The fraction of ϕ decay inside the nucleus (defined as $\rho{>}0.5\rho_0)$
 - 35% (βγ < 1.25)
 - 27% (1.25 < βγ < 1.75)
- Due to the small difference, the spectrum shape with the mass shift may be similar in the two βγ ranges

- 6 forward modules in top and bottom layers
- MRPC and TSC (Track start counter) for Time-of-Flight measurement
- AC (Aerogel Cherenkov Counter) for pion rejection
- SSDs and GTRs for tracking

Particle identification (Simulation)

TOF with TSC-MRPC

- π/K separation ($\pm 2\sigma$) p<=1.2 GeV/c
- Flight path =1.1 m
- →Required MRPC and TSC timing resolution ~80ps, 50ps

y-p_T acceptance overlap

p+Cu (No AC veto)

Acceptance overlap ⇒Direct comparison of BR is possible

$\beta\gamma$ acceptance with AC veto

Expected statistics

- Beam time: 30 days
- Beam: 30-GeV protons at 10⁹/spill
- Targets: 0.1 % interaction C, Cu, and Pb

♦→K+K- signals	p+C	p+Cu	p+Pb
Total ϕ	159k	262k	662k
Φ (βγ<1.25)	72k	113k	314k
Φ (1.25<βγ<1.75)	84k	146k	340k

E325

♦→K+K- signals	p+C	p+Cu	p+Pb
Total ϕ	0.4k	0.8k	-
Φ (βγ<1.25)	-	-	-
Φ (1.25<βγ<1.75)	0.4k	0.8k	-

Expected statistical and systematic errors

 $\sigma(A) = \sigma_1 A^{\alpha}$

- σ : ϕ production cross section
- A : index of A scaling (w/ C and Cu)

E88

- higher statistics by 2-orders of magnitude than E325
- E88 will establish the difference of α (ee) and α (KK)
- No extrapolation necessary to compare to ee
- Additional lead target data

Dispersion relation w/ ϕ polarization

Fig. 5. Effective mass (upper plot) and width increase (lower plot) of the single peak fit, shown as a function of $|\vec{q}|$. In the upper plot, the central values of the transverse (longitudinal) masses are shown as blue (red) dashed lines for comparison.

Fig. 4. The polarization-averaged ϕ meson peak with Γ =15, 40, and 65 MeV at normal nuclear matter density. The vacuum peak is shown as a black dotted line for comparison.

H.J. Kim and P. Gubler, Phys. Lett. B 805, 135412 (2020).

- I.W. Park, H. Sako, K. Aoki, P. Gubler and S.H. Lee Submitted to PRD
- Pure transverse and longitudinal polarized φs can be extracted with K+K- decay angles 18

Distinguishing ϕ polarization at E88

- $\phi \rightarrow K+K-$ within E88 acceptance
- Almost full acceptance in kaon decay angle in $1 < p\phi < 1.5 GeV/c$
- Both transverse and longitudinal polarized ϕ can be extracted

MRPC development

R&D of 2nd prototype with high-rate capability

- Warming glass sheets→lower resistivity
- \rightarrow shorter recovery time from discharge
- Timing resolution 94ps, efficiency better than 95% so far
- \rightarrow Further improvement in progress

MRPC/TSC/AC test at E16

- E16 commissioning run (Run0d) in May 2023
- Test of kaon identification
- 2 MRPCs, 1 TSC, 3 AC modules will be installed.

Summary

- J-PARC E88 aims to measure $\phi \rightarrow K+K$ decay in p+C, p+Cu and p+Pb to study modification of ϕ in nuclei, focusing on low ϕ velocity.
- We will collect ~1M $\phi \rightarrow$ K+K- decays at $\beta\gamma$ <2, which has higher statistics than KEK-E325 by 2-orders of magnitude.
- We analyze K+K- spectrum with good mass resolution to search for mass modification.
- We will study the difference in the target mass number dependence of the yields from $\phi{\rightarrow}e{+}e{-}$ data.
- ϕ mass modification with transverse and longitudinal polarization can be studied with K decay angles.
- E88 will provide advanced understanding of ϕ in-medium modification and KN interaction.