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ISBA23 Pohang Accelerator LaboratoryLaplace’s	equations	for	the	Magnetostatic fields
The	  	 is	a	system	only	with	the	 	 ,	which	produces	the	time-independent	magnetic	field.
We	know	the	two	of	the	Maxwell’s	equations	are	as	follows;
• Gauss’s	law	for	the	magnetic	field		 ⋅  = 0										(1)
• Ampere	law	in	the	Magnetostatic system  ×  = 										(2)
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 = 1 : permeability of the material

 ⋅  = 



ISBA23 Pohang Accelerator LaboratoryExercise	1
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 ⋅  =  1  ⋅  = 1  × 2 = 

 = 1 

wire 
 ⋅  =   = 1  : permeability of the air

B = 	2



ISBA23 Pohang Accelerator LaboratoryLaplace’s	equations	for	the	Magnetostatic fields	(cont’d)
From	the	Gauss’s	law,	we	can	define	the	 	 	 s.t. =  × 										(3)Substitute	(3)	to	the	Ampere	law	in	the	free	space	(	 = 0) ×  = 0										 4 					 ×  ×  =   ⋅  −  = 0By	choosing	the	Coulomb	gauge	 ⋅  = 0,	the	Laplace	equation	is	derived. = 0										(5)
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ISBA23 Pohang Accelerator LaboratoryLaplace’s	equations	for	the	Magnetostatic fields	(cont’d)
Another	Laplace’s	equation	can	be	derived	in	the	free	space,	by	defining	the	  	 	Φ s.t.  = −Φ										(6)Apply	Gauss’s	law	(1),  ⋅ −Φ = 0									 ∴ 		 Φ = 0										(7)hence	the	Laplace’s	equation	is	derived.
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ISBA23 Pohang Accelerator LaboratoryMagnetostatic fields	in	the	Accelerator
In	the	accelerator,	we	control	the	motion	of	the	charged	particle	beam	passing	through	the	vacuum	chamber	by	letting	the	beam	experiences	external	magnetic	field.We	can	solve	the	Laplace’s	equations  = 0										(5)Φ = 0										(7)by	applying	boundary	conditions	to	obtain	potential	fields	and	the	magnetic	fields.Of	course,	two	Laplace’s	equations	give	the	same	solutions,	however,	treating	the	scalar	potential	is	easier	than	treating	the	vector	potential.
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ISBA23 Pohang Accelerator LaboratorySolving	the	Laplace’s	equation	via	Separation	of	Variables
Laplace’s	equation	in	the	fixed	polar	coordinate

Φ(, ) = 1   Φ + 1 Φ = 0
Separation	of	variables	as	Φ ,  =   Θ  ,	then    + 1ΘΘ = 0
The	first	term	only	includes	,	and	the	second	term	only	includes	,	i.e.	two	terms	must	be	constant.    = , 	 Θ = −Θ
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ISBA23 Pohang Accelerator LaboratorySolving	the	Laplace’s	equation	via	Separation	of	Variables	(cont’d) =  ≠ 0 case
  +   −  = 0					 → 					   =  + 			 by	using	the	trial	solution		~	Θ = −Θ					 → 					 Θ  =  cos  +  sin
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The	general	solution Φ ,  =   +   cos +  sin
 										Boundary	condition	:	Φ	is	′0′	at	 = 0					 → 					  = 0		  ≥ 1

∴ 		 Φ ,  =    cos  +  sin
 										(11) 										 = ,  = 



ISBA23 Pohang Accelerator LaboratorySolving	the	Laplace’s	equation	via	Separation	of	Variables	(cont’d)
Let	the	eigenmode	of	the	Laplace’s	equationΦ ,  =   cos  +  sin 										(12)
The	  is	a	magnetic	system	consists	of	a	single	eigenmode
• The	 	2-pole	magnet	is	represented	by	 = 0 :	Φ,  ,  =  sin 								(16)
• The	 	2-pole	magnet	is	represented	by	 = 0 ∶ 	Φ, ,  =  cos  										(17)
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ISBA23 Pohang Accelerator LaboratoryVector	potential	in	the	Frenet-Serret coordinate
The	motion	of	a	particle	in	the	accelerator	is	described	in	the	Frenet-Serret coordinate	 , ,  ,	thereby	we	need	to	solve	the	Laplace’s	equations	in	the	Frenet-Serret coordinate.

 





Ideal orbit

Trajectory

ℎ = 1

• The	Hamiltonian	of	a	charged	particle	in	the	Frenet-Serret coordinate
ℋ =   −   +  −   +  −  ℎ + + (, , )
where	ℎ = 1 +   	 ∶ 		scaling	factor
• Expansion	of	the	curl	operator	in	the	Frenet-Serret coordinate
= 1ℎ  ℎ −   + 1ℎ  −  ℎ  +  −  								(8)
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ISBA23 Pohang Accelerator LaboratoryMagnetostatic fields	in	the	Frenet-Serret coordinate	(cont’d)
• In	the	previous	expansion	of	curl	operator	(8),	we	only	considered	the	transverse	rotation	around	the	center,	i.e.	did	not	consider	the	vertical	torsion	of	the	coordinate.We	only	consider	the	transverse	magnetic	field,	which	means
• Laplace’s	equation	for	the	magnetostatic scalar	potential	reduces	to	two-dimensional	boundary	problem	of	 and	.
• The	vector	potential	only	has	the	longitudinal	component,	i.e.	 =  = 0 or	 = (0, 0, ).	Then,	(8)	can	be	reduced	as

 = 1ℎ  ℎ −   + 1ℎ  −  ℎ  +  −  
 =  	,  = − 1ℎ  ℎ ,  = 0									(9)

12

ℎ = 1 + 



ISBA23 Pohang Accelerator LaboratoryMagnetostatic fields	in	the	Frenet-Serret coordinate	(cont’d)
 =  	 ,  = − 1ℎ  ℎ ,  = 0										(9)

As		 → ∞,	the	scaling	factor	ℎ = 1 +  	→ 1 and	the	above	equations	(9)	reduces	as
 =  	 ,  = − ,  = 0										(10)

which	are	same	with	the	definition	of	curl	operator	in	the	Cartesian	coordinate.This	coincides	with	the	fact	that	the	Frenet-Serret coordinate	can	be	approximated	to	the	Cartesian	coordinate	as		 → ∞.
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ISBA23 Pohang Accelerator LaboratoryNormal	dipole	magnet	( = 1)
• Magnetostatic scalar	potential	:	From	(16)Φ =  sin  =  = −
• Magnetic	field  = −Φ = − ≡ 
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From. Wille

From. Wikipedia

From. Wille



ISBA23 Pohang Accelerator LaboratoryNormal	dipole	magnet	( = 1)	(cont’d)
Calculation	of	the	characteristic	value	

• Boundary	condition	:	 = ,	while	 =  ~5000 ≫ 1
• Ampere’s	law

 ⋅  = ℎ +  ≈ ℎ = 
• magnetic	field	strength

 =  = ℎ
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ISBA23 Pohang Accelerator LaboratoryNormal	dipole	magnet	( = 1)	(cont’d)
In	the	uniform	magnetic	field,	a	charged	particle	moves	in	a	uniform	circular	motion	due	to	the	Lorentz	force =  =  	, 	 : velocity	of	the	ideal	particle

∴ 		 =  =  										 19 					 ∶ magnetic	rigidity
• Vector	potentialFrom	(9),  =  = 0	 = − 1ℎ  ℎ = 
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ISBA23 Pohang Accelerator LaboratoryNormal	dipole	magnet	( = 1)	(cont’d)
Assume	ℎ =  +  + ,	then	the	last	equation	becomes

 + 2 = −ℎ = − −  					∀					 = −,  = −2∴ 		 = − 1 +   + 2Note	that	ℎ = 1 +  is	a	function	of	,	since	 ≠ ∞ from	(19)
• As	 → ∞,	 ≈ − :		the	vector	potential	at	Cartesian	coordinate,	satisfying	(10).
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 =  = 0	,  = − = ,		



ISBA23 Pohang Accelerator LaboratoryNormal	quadrupole	magnet	( = 2)	(cont’d)
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From. Wille From. TRIUMF



ISBA23 Pohang Accelerator LaboratoryNormal	quadrupole	magnet	( = 2)
• Magnetostatic	scalar	potentialΦ =  sin 2 =  2 sin cos  = 2  sin   cos  = 2 = −
• Magnetic	field

 = −Φ = −Φ  − Φ  = −2 − 2 ≡  +  =  + 																							= −2 sin   + cos   ≡  sin   + cos 
• Magnetic	field	gradient	

 ≡  = −2
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 = −2
Φ = 2 = −



ISBA23 Pohang Accelerator LaboratoryNormal	quadrupole	magnet	( = 2)	(cont’d)
• Characteristic	value	on	 −axis	  = 0 ≡  sin   + cos   =  =  					→ 					 =  =  = −2
• Characteristic	value	on	 −axis	  =  ≡  sin   + cos   =  =  					→ 					 =  =  = −2

 = −Φ

 =  ×  =    0 0 −  0 =   −  	
if	 < 0,	focusing	on	 −direction,defocusing	on	 −direction
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ISBA23 Pohang Accelerator LaboratoryCalculation	of	the	Magnetic	field	gradient	( ≥ 2)	(cont’d)
bore	radius

Ampere’s	law	for	 →  →  →    =    
 +    

 ∵ 	 	 	
+   

 		∵			
= 

∴ 		   = 1   
 = 
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 = 



ISBA23 Pohang Accelerator LaboratoryCalculation	of	the	Magnetic	field	gradient	( ≥ 2)	(cont’d)
To	calculate	the	last	integral,	apply	Ampere’s	law	again	for	 →  →  → 
   =    

 + 
 + 

 = 0
→		   

 = − 
 − 

 	=  
 + 

 =      +      
∴      +       = 										 21
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 = 



ISBA23 Pohang Accelerator LaboratoryNormal	quadrupole	magnet	( = 2)	(cont’d)
• Magnetic	field	gradient	of	the	quadrupole	magnetApply	(21)	with	 = 2,

 =      +       =    +   


= 0 +  12  = 12
∴ 		 = 2
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 =  +  =  + 



ISBA23 Pohang Accelerator LaboratoryNormal	quadrupole	magnet	( = 2)	(cont’d)
• Vector	potentialThe	quadrupole	magnet,	there	is	no	bending	component,	so	 → ∞	 or	ℎ = 1 .Therefore,	the	Frenet-Serret coordinate	is	approximated	to	the	Cartesian	coordinate,	so	the	magnetic	field	and	the	vector	potential	has	the	relation	(10) =  	 ,  = − ,  = 0										(10)
Guessing	 =  + ,		then	 =  = 2 = 	,  = −  = −2 =  ∴ 		 = −  ,  = ∴ 		 = −12  − 
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ISBA23 Pohang Accelerator LaboratoryNormal	sextupolemagnet	( = 3)	(cont’d)
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From. Wille
From. ESRF



ISBA23 Pohang Accelerator LaboratoryNormal	sextupolemagnet	( = 3)
• Magnetostatic	scalar	potentialΦ =  sin 3 =  −4sin  + 3 sin = −4 sin  + 3 sin  = −4 + 3 sin = −4 + 3  +   = 3 − 
• Magnetic	field

 = −Φ = −Φ  − Φ  = −6 − 3  −   		= −3 sin 2  + cos 2 ≡  sin 2  + cos 2 
• Magnetic	2nd field	gradient	:	′

 =  = −6	, 		  ≡  =  = −6	
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Φ = −16′ 3 − 
 ≡  +  =  + 12  −  



ISBA23 Pohang Accelerator LaboratoryNormal	sextupolemagnet	( = 3)	(cont’d)
• Characteristic	value	of	the	sextupole magnetApply	(21)	with	 = 3,

 =      +       =     
 + 12  −     											= 16

																															∴ 		′ = 6
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ISBA23 Pohang Accelerator LaboratoryNormal	sextupolemagnet	( = 3)	(cont’d)
• Vector	potentialGuessing	 =  +  and	using	the	relation	(10) =  	 ,  = − ,  = 0										(10)
Comparing	with	 =  +   −   gives	 = −  ,  = ∴ 	 = −16  − 3
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ISBA23 Pohang Accelerator LaboratorySummary
• In	general,	magnetic	field	can	be	Taylor	expanded	in	any	magnetic	system,	e.g.	on	the	-axis,	 , 0 =  +    + 12!    + 13!    +⋯

																=  +  + 12 + 16′′ +⋯
Multiply	 to	each	side,   =  +  + 12  + 16  ′′ +⋯																																		

										≡ 1 +  + 12! + 13!  +⋯

1 =  	 ∶ Dipole	strength
 =  			 ∶ Quadrupole	strength =  	 ∶ Sextupole	strength
 =   	 ∶ Octupole	strength
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ISBA23 Pohang Accelerator Laboratory
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ISBA23 Pohang Accelerator LaboratoryNormal	octupole	magnet	( = 4)
• Magnetostatic	scalar	potential

Φ =  sin 4 = 4 2 sin cos  − sin cos = 4 − 4 = −16′′  − 
• Magnetic	field

 = −Φ = −4 3 −   − 4  − 3  = 16 3 −   +  − 3 																							= −4 sin 3  + cos3  ≡  sin 3  + cos 3 
• Characteristic	value

′′ ≡  = −24
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ISBA23 Pohang Accelerator LaboratoryNormal	octupole	magnet	( = 3)	(cont’d)
• Characteristic	value	of	the	octupole	magnetApply	(21)	with	 = 4, =      +      											= 16′′  3 −      + 16′′   − 3      											= 124′′

∴ 		′ = 24
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ISBA23 Pohang Accelerator LaboratoryNormal	octupole	magnet	( = 3)	(cont’d)
• Vector	potentialConsider	 =   +  +  and	using	the	relation	(10)

 =  	 ,  = − ,  = 0										(10)
Comparing	with	 =  3 −   +  − 3  gives	 = −  ,  =  ,  = − ∴ 	 = − 124  − 6 + 

33


