Theory for Magnets in accelerators

Today's agenda

- Maxwell's equations
- Dipole magnet
- Quaddupole magnet
- Sextupole magnet

Laplace's equations for the Magnetostatic fields

The M agnetostaic system is a system only with the seady aurrents , which produces the timeindependent magnetic field.

We know the two of the Maxwell's equations are as follows;

- Gauss's law for the magnetic field $\nabla \cdot \mathbf{B}=0$
- Ampere law in the Magnetostatic system

$$
\nabla \times \mathbf{H}=\mathbf{J}_{f} \quad(2) \quad \Longrightarrow \quad \oint \mathbf{H} \cdot d \mathbf{l}=I
$$

$$
\mathbf{H}=\frac{1}{\mu} \mathbf{B} \quad \mu: \text { permeability of the material }
$$

Exercise 1

$$
\oint \mathbf{H} \cdot d \mathbf{l}=I \quad \mathbf{H}=\frac{1}{\mu} \mathbf{B} \quad \longrightarrow \quad \mathbf{H}=\frac{1}{\mu_{0}} \mathbf{B}
$$

μ_{0} : permeability of the air

$$
\oint \mathbf{H} \cdot d \mathbf{l}=\oint \frac{1}{\mu_{0}} \mathbf{B} \cdot d \mathbf{l}=\frac{1}{\mu_{0}} \mathbf{B} \times 2 \pi r=I \quad \square \quad \mathbf{B}=\frac{\mu_{0} I}{2 \pi r}
$$

Laplace's equations for the Magnetostatic fields (cont'd)

From the Gauss's law, we can define the vector potential A s.t.

$$
\begin{equation*}
\mathbf{B}=\nabla \times \mathbf{A} \tag{3}
\end{equation*}
$$

Substitute (3) to the Ampere law in the free space ($\mathbf{J}=0$)

$$
\begin{align*}
\nabla \times \mathbf{B} & =0 \tag{4}\\
\nabla \times(\nabla \times \mathbf{A}) & =\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}=0
\end{align*}
$$

By choosing the Coulomb gauge $\nabla \cdot \mathbf{A}=0$, the Laplace equation is derived.

$$
\begin{equation*}
\nabla^{2} \mathbf{A}=0 \tag{5}
\end{equation*}
$$

Laplace's equations for the Magnetostatic fields (cont'd)

Another Laplace's equation can be derived in the free space, by defining the m agnetostatic
scabr potential
Φ_{m} s.t.

$$
\begin{equation*}
\mathbf{B}=-\nabla \Phi_{m} \tag{6}
\end{equation*}
$$

Apply Gauss's law (1),

$$
\begin{equation*}
\nabla \cdot\left(-\nabla \Phi_{m}\right)=0 \quad \therefore \nabla^{2} \Phi_{m}=0 \tag{7}
\end{equation*}
$$

hence the Laplace's equation is derived.

Magnetostatic fields in the Accelerator

In the accelerator, we control the motion of the charged particle beam passing through the vacuum chamber by letting the beam experiences external magnetic field.

We can solve the Laplace's equations

$$
\begin{gather*}
\nabla^{2} \mathbf{A}=0 \tag{5}\\
\nabla^{2} \Phi_{m}=0 \tag{7}
\end{gather*}
$$

by applying boundary conditions to obtain potential fields and the magnetic fields.
Of course, two Laplace's equations give the same solutions, however, treating the scalar potential is easier than treating the vector potential.

Solving the Laplace's equation via Separation of Variables

Laplace's equation in the fixed polar coordinate

$$
\nabla^{2} \Phi_{m}(r, \theta)=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \Phi_{m}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \Phi_{m}}{\partial \theta^{2}}=0
$$

Separation of variables as $\Phi_{m}(r, \theta)=R(r) \Theta(\theta)$, then

$$
\frac{r}{R} \frac{d}{d r}\left(r \frac{d R}{d r}\right)+\frac{1}{\Theta} \frac{d^{2} \Theta}{d \theta^{2}}=0
$$

The first term only includes r, and the second term only includes θ, i.e. two terms must be constant.

$$
\frac{r}{R} \frac{d}{d r}\left(r \frac{d R}{d r}\right)=k^{2}, \quad \frac{d^{2} \Theta}{d \theta^{2}}=-k^{2} \Theta
$$

Solving the Laplace's equation via Separation of Variables (cont'd)

$$
\begin{aligned}
& k=n \neq 0 \text { case } \\
& \\
& \qquad r^{2} \frac{d^{2} R}{d r^{2}}+r \frac{d R}{d r}-n^{2} R=0 \quad \rightarrow \quad R_{n}(r)=A_{n} r^{n}+B_{n} r^{-n} \quad\left(\text { by using the trial solution } R \sim r^{\lambda}\right) \\
& \\
& \\
& \frac{d^{2} \Theta}{d \theta^{2}}=-n^{2} \Theta \quad \rightarrow \quad \Theta_{n}(\theta)=C_{n} \cos n \theta+D_{n} \sin n \theta
\end{aligned}
$$

The general solution

$$
\Phi_{m}(r, \theta)=\sum_{n=1}^{\infty}\left(A_{n} r^{n}+B_{n} r^{-n}\right)\left(C_{n} \cos n \theta+D_{n} \sin n \theta\right)
$$

Boundary condition : Φ_{m} is ' 0 ' at $r=0 \quad \rightarrow \quad B_{k}=0(k \geq 1)$

$$
\therefore \quad \Phi_{m}(r, \theta)=\sum_{n=1}^{\infty} r^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right) \quad \text { (11) } \quad a_{n}=A_{n} C_{n}, b_{n}=A_{n} D_{n}
$$

Solving the Laplace's equation via Separation of Variables (cont'd)

Let the eigenmode of the Laplace's equation

$$
\begin{equation*}
\Phi_{m}^{(n)}(r, \theta)=r^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right) \tag{12}
\end{equation*}
$$

The m agnet is a magnetic system consists of a single eigenmode

- The norm al $2 n$-pole magnet is represented by $a_{n}=0: \Phi_{m, \text { nom al }}^{(n)}(r, \theta)=b_{n} r^{n} \sin n \theta$
- The skew $2 n$-pole magnet is represented by $b_{n}=0: \Phi_{m, \text { skew }}^{(n)}(r, \theta)=a_{n} r^{n} \cos n \theta$

Vector potential in the Frenet-Serret coordinate

The motion of a particle in the accelerator is described in the Frenet-Serret coordinate (x, y, s), thereby we need to solve the Laplace's equations in the Frenet-Serret coordinate.

- The Hamiltonian of a charged particle in the Frenet-Serret coordinate

$$
\mathcal{H}=c \sqrt{\left(p_{x}-q A_{x}\right)^{2}+\left(p_{y}-q A_{y}\right)^{2}+\frac{\left(p_{z}-q A_{s}\right)^{2}}{h_{s}^{2}}+m^{2} c^{2}}+q V(x, y, z)
$$

$$
\text { where } h_{s}=1+\frac{x}{\rho(s)}: \text { scaling factor }
$$

- Expansion of the curl operator in the Frenet-Serret coordinate

B

$$
\begin{equation*}
=\frac{1}{h_{s}}\left[\frac{\partial\left(h_{s} A_{s}\right)}{\partial y}-\frac{\partial A_{y}}{\partial s}\right] \hat{\mathbf{x}}+\frac{1}{h_{s}}\left[\frac{\partial A_{x}}{\partial s}-\frac{\partial\left(h_{s} A_{s}\right)}{\partial x}\right] \hat{\mathbf{y}}+\left(\frac{\partial A_{x}}{\partial x}-\frac{\partial A_{y}}{\partial y}\right) \hat{\mathbf{s}} \tag{8}
\end{equation*}
$$

Magnetostatic fields in the Frenet-Serret coordinate (cont'd)

- In the previous expansion of curl operator (8), we only considered the transverse rotation around the center, i.e. did not consider the vertical torsion of the coordinate.

We only consider the transverse magnetic field, which means

- Laplace's equation for the magnetostatic scalar potential reduces to two-dimensional boundary problem of x and y.
- The vector potential only has the longitudinal component, i.e. $A_{x}=A_{y}=0$ or $\mathbf{A}=\left(0,0, A_{s}\right)$. Then, (8) can be reduced as

$$
\begin{gather*}
\mathbf{B}=\frac{1}{h_{s}}\left[\frac{\partial\left(h_{s} A_{s}\right)}{\partial y}-\frac{\partial A_{y}}{\partial s}\right] \hat{\mathbf{x}}+\frac{1}{h_{s}}\left[\frac{\partial A_{x}}{\partial s}-\frac{\partial\left(h_{s} A_{s}\right)}{\partial x}\right] \hat{\mathbf{y}}+\left(\frac{\partial A_{x}}{\partial x}-\frac{\partial A_{y}}{\partial y}\right) \hat{\mathbf{s}} \quad h_{s}=1+\frac{x}{\rho} \\
B_{x}=\frac{\partial A_{s}}{\partial y}, \quad B_{y}=-\frac{1}{h_{s}} \frac{\partial\left(h_{s} A_{s}\right)}{\partial x}, \quad B_{s}=0 \tag{9}
\end{gather*}
$$

Magnetostatic fields in the Frenet-Serret coordinate (cont'd)

$$
\begin{equation*}
B_{x}=\frac{\partial A_{s}}{\partial y}, \quad B_{y}=-\frac{1}{h_{s}} \frac{\partial\left(h_{s} A_{s}\right)}{\partial x}, \quad B_{s}=0 \tag{9}
\end{equation*}
$$

As $\rho \rightarrow \infty$, the scaling factor $h_{s}=1+\frac{x}{\rho} \rightarrow 1$ and the above equations (9) reduces as

$$
\begin{equation*}
B_{x}=\frac{\partial A_{s}}{\partial y}, \quad B_{y}=-\frac{\partial A_{s}}{\partial x}, \quad B_{s}=0 \tag{10}
\end{equation*}
$$

which are same with the definition of curl operator in the Cartesian coordinate.
This coincides with the fact that the Frenet-Serret coordinate can be approximated to the Cartesian coordinate as $\rho \rightarrow \infty$.

Normal dipole magnet $(n=1)$

- Magnetostatic scalar potential : From (16)
- Magnetic field

$$
\Phi_{m}=b_{1} r \sin \theta=b_{1} y=-B_{0} y
$$

$$
\mathbf{B}=-\nabla \Phi_{m}=-b_{1} \hat{\mathbf{y}} \equiv B_{0} \hat{\mathbf{y}}
$$

From. Wille

From. Wikipedia

Normal dipole magnet ($n=1$) (cont'd)

Calculation of the characteristic value B_{0}

- Boundary condition : $\mu_{\mathrm{Fe}} H_{\mathrm{Fe}}=\mu_{0} H_{0}$, while $\mu_{r}=\frac{\mu_{\mathrm{Fe}}}{\mu_{0}} \sim 5000 \gg 1$

- Ampere's law

$$
\oint \mathbf{H} \cdot d \mathbf{l}=H_{0} h+H_{\mathrm{Fe}} l_{\mathrm{Fe}} \approx H_{0} h=N I
$$

- magnetic field strength

$$
B_{0}=\mu_{0} H_{0}=\frac{\mu_{0} N I}{h}
$$

Normal dipole magnet ($n=1$) (cont'd)

In the uniform magnetic field, a charged particle moves in a uniform circular motion due to the Lorentz force

$$
\begin{gathered}
|\mathbf{F}|=q v_{0} B_{0}=\frac{\gamma m v_{0}^{2}}{\rho}, \quad v_{0}: \text { velocity of the ideal particle } \\
\therefore \rho B_{0}=\frac{\gamma m v_{0}}{q}=\frac{p_{0}}{q}
\end{gathered}
$$

- Vector potential

From (9),

$$
\begin{aligned}
& B_{x}=\frac{\partial A_{s}}{\partial y}=0 \\
& B_{y}=-\frac{1}{h_{s}} \frac{\partial\left(h_{s} A_{s}\right)}{\partial x}=B_{0}
\end{aligned}
$$

Normal dipole magnet ($n=1$) (cont'd)

Assume $h_{s} A_{s}=a+b x+c x^{2}$, then the last equation becomes

$$
\begin{gathered}
b+2 c x=-h_{s} B_{0}=-B_{0}-\frac{B_{0}}{\rho} x \quad \overrightarrow{\forall x} \quad b=-B_{0}, \quad c=-\frac{B_{0}}{2 \rho} \\
\therefore \quad A_{s}=-\frac{B_{0}}{1+\frac{x}{\rho}}\left(x+\frac{x^{2}}{2 \rho}\right)
\end{gathered}
$$

Note that $h_{s}=1+\frac{x}{\rho}$ is a function of x, since $\rho \neq \infty$ from (19)

- As $\rho \rightarrow \infty, A_{s} \approx-B_{0} x$: the vector potential at Cartesian coordinate, satisfying (10).

$$
B_{x}=\frac{\partial A_{s}}{\partial y}=0, \quad B_{y}=-\frac{\partial A_{s}}{\partial x}=B_{0}
$$

Normal quadrupole magnet $(n=2)$ (cont'd)

From. Wille

From. TRIUMF

Normal quadrupole magnet $(n=2)$

- Magnetostatic scalar potential

$$
\Phi_{m}=b_{2} r^{2} \sin 2 \theta=b_{2} r^{2}(2 \sin \theta \cos \theta)=2 b_{2}(r \sin \theta)(r \cos \theta)=2 b_{2} x y=-g x y
$$

- Magnetic field

$$
\begin{aligned}
\mathbf{B}=-\nabla \Phi_{m} & =-\frac{\partial \Phi_{m}}{\partial x} \hat{\mathbf{x}}-\frac{\partial \Phi_{m}}{\partial y} \hat{\mathbf{y}}=-2 b_{2} y \hat{\mathbf{x}}-2 b_{2} x \hat{\mathbf{y}} \equiv g y \hat{\mathbf{x}}+g x \hat{\mathbf{y}}=B_{x} \hat{\mathbf{x}}+B_{y} \hat{\mathbf{y}} \\
& =-2 b_{2} r(\sin \theta \hat{\mathbf{x}}+\cos \theta \hat{\mathbf{y}}) \equiv B_{a m}(\sin \theta \hat{\mathbf{x}}+\cos \theta \hat{\mathbf{y}}) \quad B_{a m}=-2 b_{2} r
\end{aligned}
$$

- Magnetic field gradient

$$
g \equiv \frac{\partial B_{a m}}{\partial r}=-2 b_{2} \quad \square \quad \Phi_{m}=2 b_{2} x y=-g x y
$$

Normal quadrupole magnet $(n=2)$ (cont'd)

- Characteristic value on x-axis $(\theta=0)$

$$
\mathbf{B} \equiv B_{a m}(\sin \theta \hat{\mathbf{x}}+\cos \theta \hat{\mathbf{y}})=B_{a m} \hat{\mathbf{y}}=B_{y} \hat{\mathbf{y}} \quad \rightarrow \quad g=\frac{\partial B_{a m}}{\partial r}=\frac{\partial B_{y}}{\partial x}=-2 b_{2}
$$

- Characteristic value on $y-\operatorname{axis}\left(\theta=\frac{\pi}{2}\right)$
$\mathbf{B} \equiv B_{a m}(\sin \theta \hat{\mathbf{x}}+\cos \theta \hat{\mathbf{y}})=B_{a m} \hat{\mathbf{x}}=B_{x} \hat{\mathbf{x}} \quad \rightarrow \quad g=\frac{\partial B_{a m}}{\partial r}=\frac{\partial B_{x}}{\partial y}=-2 b_{2}$

$\mathbf{F}=q \mathbf{v} \times \mathbf{B}=q\left|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{s}} \\ 0 & 0 & -v \\ B_{x} & B_{y} & 0\end{array}\right|=q v g x \hat{\mathbf{x}}-q v g y \hat{\mathbf{y}}$
if $q<0$, focusing on x-direction, defocusing on y-direction

Calculation of the Magnetic field gradient $(n \geq 2)$ (cont'd)

Ampere's law for $a \rightarrow b \rightarrow c \rightarrow a$

$$
\begin{aligned}
& \oint \mathbf{H} \cdot d \mathbf{l}=\int_{a}^{b} \mathbf{H}_{0} \cdot d \mathbf{l}+\underbrace{}_{\substack{=0 \\
\left(\because \text { insle } \\
\int_{\text {the ion yoke })}^{c} \mathbf{H}_{\mathrm{Fe}} \cdot d \mathbf{l}\right.} \underbrace{\int_{c}^{a} \mathbf{H} \cdot d \mathbf{l}}_{\substack{\because=0 \\
(: \mathbf{H} \perp d \mathbf{l})}}=N I} \\
& \therefore \oint \mathbf{H} \cdot d \mathbf{l}=\frac{1}{\mu_{0}} \int_{a}^{b} \mathbf{B} \cdot d \mathbf{l}=N I
\end{aligned} \int_{a}^{b} \mathbf{B} \cdot d \mathbf{l}=\mu_{0} N I .
$$

Calculation of the Magnetic field gradient $(n \geq 2)$ (cont'd)

To calculate the last integral, apply Ampere's law again for $a \rightarrow b \rightarrow d \rightarrow a$

$$
\oint \mathbf{B} \cdot d \mathbf{l}=\int_{a}^{b} \mathbf{B} \cdot d \mathbf{l}+\int_{b}^{d} B_{y} d y+\int_{d}^{a} B_{x} d x=0
$$

$$
\int_{a}^{b} \mathbf{B} \cdot d \mathbf{l}=\mu_{0} N I
$$

$$
\rightarrow \int_{a}^{b} \mathbf{B} \cdot d \mathbf{l}=-\int_{d}^{a} B_{x} d x-\int_{b}^{d} B_{y} d y=\int_{a}^{d} B_{x} d x+\int_{d}^{b} B_{y} d y=\left.\int_{0}^{R \cos \frac{\pi}{2 n}} B_{x}\right|_{y=0} d x+\left.\int_{0}^{R \sin \frac{\pi}{2 n}} B_{y}\right|_{x=R \cos \frac{\pi}{2 n}} d y
$$

$$
\begin{equation*}
\left.\therefore \int_{0}^{R \cos \frac{\pi}{2 n}} B_{x}\right|_{y=0} d x+\left.\int_{0}^{R \sin \frac{\pi}{2 n}} B_{y}\right|_{x=R \cos \frac{\pi}{2 n}} d y=\mu_{0} N I \tag{21}
\end{equation*}
$$

Normal quadrupole magnet $(n=2)$ (cont'd)

$$
\mathbf{B}=g y \hat{\mathbf{x}}+g x \hat{\mathbf{y}}=B_{x} \hat{\mathbf{x}}+B_{y} \hat{\mathbf{y}}
$$

- Magnetic field gradient of the quadrupole magnet

Apply (21) with $n=2$,

$$
\begin{aligned}
& \mu_{0} N I=\left.\int_{0}^{R \cos \frac{\pi}{2 n}} B_{x}\right|_{y=0} d x+\left.\int_{0}^{R \sin \frac{\pi}{2 n}} B_{y}\right|_{x=R \cos \frac{\pi}{2 n}} d y=\left.\int_{0}^{\frac{1}{\sqrt{2}} R} g y\right|_{y=0} d x+\left.\int_{0}^{\frac{1}{\sqrt{2}} R} g x\right|_{x=\frac{1}{\sqrt{2}} R} d y \\
& =0+g \frac{1}{\sqrt{2}} R \int_{0}^{\frac{1}{\sqrt{2}} R} d y=\frac{1}{2} g R^{2} \\
& \therefore g=\frac{2 \mu_{0} N I}{R^{2}}
\end{aligned}
$$

Normal quadrupole magnet $(n=2)$ (cont'd)

- Vector potential

The quadrupole magnet, there is no bending component, so $\rho \rightarrow \infty$ (or $h_{s}=1$).
Therefore, the Frenet-Serret coordinate is approximated to the Cartesian coordinate, so the magnetic field and the vector potential has the relation (10)

$$
\begin{equation*}
B_{x}=\frac{\partial A_{s}}{\partial y}, \quad B_{y}=-\frac{\partial A_{s}}{\partial x}, \quad B_{s}=0 \tag{10}
\end{equation*}
$$

Guessing $A_{s}=a x^{2}+b y^{2}$, then $B_{x}=\frac{\partial A_{s}}{\partial y}=2 b y=g y, B_{y}=-\frac{\partial A_{s}}{\partial x}=-2 a x=g x \quad \therefore \quad a=-\frac{g}{2}, b=\frac{g}{2}$

$$
\therefore \quad A_{s}=-\frac{1}{2} g\left(x^{2}-y^{2}\right)
$$

Normal sextupole magnet $(n=3)$ (cont'd)

From. Wille

From. ESRF

Normal sextupole magnet ($n=3$)

- Magnetostatic scalar potential

$$
\begin{aligned}
& \Phi_{m}=b_{3} r^{3} \sin 3 \theta=b_{3} r^{3}\left(-4 \sin ^{3} \theta+3 \sin \theta\right)=-4 b_{3} r^{3} \sin ^{3} \theta+3 b_{3} r^{3} \sin \theta=-4 b_{3} y^{3}+3 b_{3} r^{2} r \sin \theta \\
& =-4 b_{3} y^{3}+3 b_{3}\left(x^{2}+y^{2}\right) y=3 b_{3} x^{2} y-b_{3} y^{3}
\end{aligned}
$$

- Magnetic field

$$
\begin{aligned}
& \mathbf{B}=-\nabla \Phi_{m}=-\frac{\partial \Phi_{m}}{\partial x} \hat{\mathbf{x}}-\frac{\partial \Phi_{m}}{\partial y} \hat{\mathbf{y}}=-6 b_{3} x y \hat{\mathbf{x}}-3 b_{3}\left(x^{2}-y^{2}\right) \hat{\mathbf{y}}=-3 b_{3} r^{2}(\sin 2 \theta \hat{\mathbf{x}}+\cos 2 \theta \hat{\mathbf{y}}) \\
& \equiv B_{a m}(\sin 2 \theta \hat{\mathbf{x}}+\cos 2 \theta \hat{\mathbf{y}})
\end{aligned}
$$

- Magnetic $2^{\text {nd }}$ field gradient : g^{\prime}

$$
\begin{gathered}
g=\frac{\partial B_{a m}}{\partial r}=-6 b_{3} r, \quad g^{\prime} \equiv \frac{\partial g}{\partial r}=\frac{\partial^{2} B_{a m}}{\partial r^{2}}=-6 b_{3} \Rightarrow \Phi_{m}=-\frac{1}{6} g^{\prime}\left(3 x^{2} y-y^{3}\right) \\
\mathbf{B} \equiv B_{x} \hat{\mathbf{x}}+B_{y} \hat{\mathbf{y}}=g^{\prime} x y \hat{\mathbf{x}}+\frac{1}{2} g^{\prime}\left(x^{2}-y^{2}\right) \hat{\mathbf{y}}
\end{gathered}
$$

Normal sextupole magnet $(n=3)$ (cont'd)

- Characteristic value of the sextupole magnet

Apply (21) with $n=3$,

$$
\begin{aligned}
& \mu_{0} N I=\left.\int_{0}^{R \cos \frac{\pi}{2 n}} B_{x}\right|_{y=0} d x+\left.\int_{0}^{R \text { sin } \frac{\pi}{2 n}} B_{y}\right|_{x=R \cos \frac{\pi}{2 n}} d y=\left.\int_{0}^{\frac{\sqrt{3}}{2} R} g^{\prime} x y\right|_{y=0} d x+\left.\int_{0}^{\frac{1}{2} R} \frac{1}{2} g^{\prime}\left(x^{2}-y^{2}\right)\right|_{x=\frac{\sqrt{3}}{2} R} d y \\
&=\frac{1}{6} g R^{3} \\
& \therefore g^{\prime}=\frac{6 \mu_{0} N I}{R^{3}}
\end{aligned}
$$

Normal sextupole magnet $(n=3)$ (cont'd)

- Vector potential

Guessing $A_{s}=a x^{3}+b x y^{2}$ and using the relation (10)

$$
\begin{equation*}
B_{x}=\frac{\partial A_{s}}{\partial y}, \quad B_{y}=-\frac{\partial A_{s}}{\partial x}, \quad B_{s}=0 \tag{10}
\end{equation*}
$$

Comparing with $\mathbf{B}=g^{\prime} x y \hat{\mathbf{x}}+\frac{1}{2} g^{\prime}\left(x^{2}-y^{2}\right) \hat{\mathbf{y}}$ gives $a=-\frac{g^{\prime}}{6}, b=\frac{g^{\prime}}{2}$

$$
\therefore A_{s}=-\frac{1}{6} g^{\prime}\left(x^{3}-3 x y^{2}\right)
$$

Summary

- In general, magnetic field can be Taylor expanded in any magnetic system, e.g. on the x-axis,

$$
\begin{aligned}
B_{y}(x, 0) & =\left.B_{y}\right|_{y=0}+\left.\frac{\partial B_{y}}{\partial x}\right|_{y=0} x+\left.\frac{1}{2!} \frac{\partial^{2} B_{y}}{\partial x^{2}}\right|_{y=0} x^{2}+\left.\frac{1}{3!} \frac{\partial^{3} B_{y}}{\partial x^{3}}\right|_{y=0} x^{3}+\cdots \\
& =B_{0}+g x+\frac{1}{2} g^{\prime} x^{2}+\frac{1}{6} g^{\prime \prime} x^{3}+\cdots
\end{aligned}
$$

Multiply $\frac{e}{p}$ to each side,
$\frac{1}{\rho}=\frac{e}{p} B_{0}:$ Dipole strength

$$
\begin{array}{rlrl}
\frac{e}{p} B_{y} & =\frac{e}{p} B_{0}+\frac{e}{p} g x+\frac{1}{2} \frac{e}{p} g^{\prime} x^{2}+\frac{1}{6} \frac{e}{p} g^{\prime \prime} x^{3}+\cdots & k & =\frac{e}{p} g \quad: \text { Quadrupole strength } \\
& \equiv \frac{1}{\rho}+k x+\frac{1}{2!} m x^{2}+\frac{1}{3!} o x^{3}+\cdots & m & =\frac{e}{p} g^{\prime}: \text { Sextupole strength } \\
& o=\frac{e}{p} g^{\prime}: \text { Octupole strength }
\end{array}
$$

Backup slides

Normal octupole magnet $(n=4)$

- Magnetostatic scalar potential

$$
\Phi_{m}=b_{4} r^{4} \sin 4 \theta=4 b_{4} r^{4}\left(2 \sin \theta \cos ^{3} \theta-\sin \theta \cos \theta\right)=4 b_{4} x^{3} y-4 b_{4} x y^{3}=-\frac{1}{6} g^{\prime \prime}\left(x^{3} y-x y^{3}\right)
$$

- Magnetic field

$$
\begin{aligned}
\mathbf{B}=-\nabla \Phi_{m} & =-4 b_{4}\left(3 x^{2} y-y^{3}\right) \hat{\mathbf{x}}-4 b_{4}\left(x^{3}-3 x y^{2}\right) \hat{\mathbf{y}}=\frac{1}{6} g^{\prime}\left[\left(3 x^{2} y-y^{3}\right) \hat{\mathbf{x}}+\left(x^{3}-3 x y^{2}\right) \hat{\mathbf{y}}\right] \\
& =-4 b_{4} r^{3}(\sin 3 \theta \hat{\mathbf{x}}+\cos 3 \theta \hat{\mathbf{y}}) \equiv B_{a m}(\sin 3 \theta \hat{\mathbf{x}}+\cos 3 \theta \hat{\mathbf{y}})
\end{aligned}
$$

- Characteristic value

$$
g^{\prime \prime} \equiv \frac{\partial^{3} B_{a m}}{\partial r^{3}}=-24 b_{4}
$$

Normal octupole magnet $(n=3)$ (cont'd)

- Characteristic value of the octupole magnet

Apply (21) with $n=4$,

$$
\begin{aligned}
& \mu_{0} N I=\left.\int_{0}^{R \cos \frac{\pi}{2 n}} B_{x}\right|_{y=0} d x+\left.\int_{0}^{R \sin \frac{\pi}{2 n}} B_{y}\right|_{x=R \cos \frac{\pi}{2 n}} d y \\
&=\left.\frac{1}{6} g^{\prime \prime} \int_{0}^{R \cos \frac{\pi}{8}}\left(3 x^{2} y-y^{3}\right)\right|_{y=0} d x+\left.\frac{1}{6} g^{\prime \prime} \int_{0}^{R \sin \frac{\pi}{8}}\left(x^{3}-3 x y^{2}\right)\right|_{x=R \cos \frac{\pi}{8}} d y \\
&= \frac{1}{24} g^{\prime \prime} R^{3} \\
& \therefore \quad g^{\prime}=\frac{24 \mu_{0} N I}{R^{4}}
\end{aligned}
$$

Normal octupole magnet $(n=3)$ (cont'd)

- Vector potential

Consider $A_{s}=\frac{1}{6} g^{\prime}\left(a x^{4}+b x^{2} y^{2}+c y^{4}\right)$ and using the relation (10)

$$
\begin{equation*}
B_{x}=\frac{\partial A_{s}}{\partial y}, \quad B_{y}=-\frac{\partial A_{s}}{\partial x}, \quad B_{s}=0 \tag{10}
\end{equation*}
$$

Comparing with $\mathbf{B}=\frac{1}{6} g^{\prime}\left[\left(3 x^{2} y-y^{3}\right) \hat{\mathbf{x}}+\left(x^{3}-3 x y^{2}\right) \hat{\mathbf{y}}\right]$ gives $a=-\frac{1}{4}, b=\frac{3}{2}, c=-\frac{1}{4}$

$$
\therefore A_{s}=-\frac{1}{24} g^{\prime \prime}\left(x^{4}-6 x^{2} y^{2}+y^{4}\right)
$$

