
Overall class structure in Geant4
Geant4 Training Course in Medicine 2023

Einar Elén
September, 2023

1



1. Introduction

3



1.1. Credits
This lecture structure is heavily based on a previous lecture by Ivana Hrivnacova and similar
lectures in the past (but condensed).

4



1.2. How is Geant4 structured?
Geant4 is not an application

Geant4 is a library that provides you with building blocks you need
i.e. It is a toolkit, and a very flexible one at that!

Use the parts you need for your problem
Upside: Allows Geant4 to work for very small scale simple problems up to huge ones
Downside: Some assembly required…

A lot of information can be found in the Book for application developers
https://geant4.web.cern.ch/docs/

5

https://geant4.web.cern.ch/docs/


Kernel classes in Geant4 important concepts
corresponding to different phases of the
simulation
Represented by classes and a corresponding
manager class
We will go from the largest to the smallest

Run
Event
Track
Step and StepPoint

Note: Many Geant4 classes can be default or
user derived versions, I won’t repeat this here

2. Kernel classes

7



2.1. Run
Run is a configuration and a set of events
Before a run starts, user must have configured

Detector setup
Source setup
Physics processes

After configuration and initialization typically consists of a single event-loop
Simulation starts by specifying “BeamOn” command, analogous to experiments

Here relevant physics configuration, cross-section table calculations, and geometry optimization occurs

Configurations must not be changed until a run is over!
Represented by G4Run, managed by the G4RunManager

8



2.2. Event
The basic unit of simulation in Geant4

Other simulation tools may use different names for the same concept (e.g. “history”)
Start with primary particles/tracks in a stack
Pop off one particle at a time and track it as it propagates through the geometry until it is done

Along the way secondary particles can be produced and are then added to the stack
Event is over when stack is empty

Represented by G4Event, managed by G4EventManager

9



2.3. Track
A track is a snapshot of a particle

Current physical quantities
Position, time, energy, etc
in current part of the simulation

No record of previous quantities
Common misconception is that a track is a history of changes!

Updated through series of steps, but does not consist of them

Represented by G4Track, managed by G4TrackingManager

10



2.3.1. Track lifetime
Track keeps propagating until the particle

Leaves the outermost volume,
Disappears during an interaction,
It has zero kinetic energy and and has no AtRest process, or
It is killed artifically by the user

Remember: Event continues until all tracks are gone
No tracks persist at the end of the event!
If you need this information, use the G4Trajectory class

11



2.4. Step
Represents the delta (change) of a particle to be applied to a track

Two points: Pre/Post StepPoint
Step is represented by G4Step while the pre/post step points are represented by
G4StepPoint

Both are managed by G4SteppingManager

When a step is limited by a volume boundary, the endpoint is at the boundary but belongs to the
next volume

You can therefore simulate boundary processes if needed

12



3. Particles and tracking

14



3.1. Particles
How particles are represented can sometimes be confusing for beginners

Not a single particle class
Different aspects of a particle are represented by different types

G4Track, G4DynamicParticle, and G4ParticleDefinition

15



3.2. The three particle representations
G4Track

A snapshot of a particle currently being tracked
G4DynamicParticle

Represents the dynamic physical properties of an individual particle
Momentum, energy, spin etc
Each G4Track has its own and unique G4DynamicParticle

G4ParticleDefinition

Represents the static properties of a particle
Charge, mass, lifetime etc

G4ParticleDefinition is shared between all G4DynamicParticle objects of the same type
Also stores the list of physics processes involving the particle

16



3.3. Tracking and processes
Tracking in Geant4 is generic

Works the same way independent of the particle type
This is powerful, but can come at a performance cost

Conceptually the algorithm is straight-forward
For more details, see the documentation

17



3.3.1. Tracking loop
Obtain the list of physics processes from each particle type
In turn let each process (if applicable)

Contribute to determining step length
Contribute to changes of the physical quantities of the track
Production of secondary particles
Suggest changes in track state (e.g. killing it)

18



4. User applications
Geant4 also provides classes that help you build your application by interacting with the kernel
classes.

Some are mandatory
Some are optional
All are passed to the G4RunManager

20



4.1. What do you need to do?
Implement a main() function
Create derived versions of the mandatory classes as well as any optional ones you need
Construct a G4RunManager and set it up with them
Handle anything else your application needs, either with Geant4 or other means!

GUI, CLI, make histograms, analysis, etc

21



4.1.1. What should you not do?
In your application do not use the raw std::cout and std::cerr objects, use the G4cout
and G4cerr versions

These will work correctly in all parts of Geant4
Similarly: Avoid relying on raw std::cin, consider using the user-defined commands instead!

22



4.2. Mandatory classes
G4VUserDetectorConstruction How the geometry is set up (volumes, materials etc)
G4VUserPhysicsList The physics configuration
G4VUserActionInitialization Action classes called during event processing

G4VPrimaryGeneratorAction is mandatory

Note: The V in the class name indicates that the class is abstract: You need to derive your own class
from it

23



4.3. UserActionInitialization
G4VUserActionInitialization groups and initializes all user action classes.

You override the Build() function where you instantiate any classes you want
Has to be used for multithreaded processing
Only the Primary generator action is mandatory (needed to produce the initial tracks)

Action classes are called automatically at relevant phase of the simulation by the kernel

24



4.3.1. Optional classes
Derive from the following and override the member functions you need

G4UserRunAction

G4UserEventAction

G4UserTrackingAction

G4UserSteppingAction

G4UserStackingAction

For example: G4UserTrackingAction::PreUserTrackingAction
Called before tracking

Since these are not abstract, make sure you are actually overriding!

25



5. Questions?

27




