Anthropomorphic Phantoms in Geant4

Geant4 Training Course in Medicine 2023 Hokkaido University

J. W. Archer¹ *, M. J. Large¹, J. M. C. Brown^{2,1}, S. Guatelli¹

¹Centre for Medical Radiation Physics, University of Wollongong ²Department of Physics and Astronomy, Swinburne University of Technology

*email: archerj@uow.edu.au

Why Human Phantoms?

- Many different applications of anthropomorphic phantom models:
 - Reference individuals are required for radiological protection and monitoring
 - Required for internal dosimetry (e.g. radionuclides in nuclear medicine and targeted therapies)
 - General radiation transport calculations

MIRD phantoms used for high dose rate superficial brachytherapy²

Space radiation protection in the ISS

¹ ICRP, 1975. ICRP Publication 23
² Ohta et. al., 2017. Energy Procedia 131

Why Human Phantoms?

- Whilst there are several publically available phantoms, they all have limitations:
 - Variability in structure due to age, race and other factors
 - Other factors contribute to the risk assessment:
 - differing iodine metabolism
 - water balance depends on environmental factors

Types of Human Phantoms in Geant4

• There are several different phantom of varying complexity included in Geant4:

• All available as <u>advanced examples</u>

MIRD Phantoms

- The Medical Internal Radiation Dose (MIRD) committee developed the adult MIRD phantom ^{3, 4}
 - Extended to children of different ages
 - Extended to male, female and pregnant female models
- Male and female phantoms are included in the *human_phantoms* advanced example

³ ICRP, 1975. ICRP Publication 23
⁴ Snyder et. al., 1969. Journal of Nuclear Medicine Supplemental 3

MIRD *Phantoms*

• The MIRD phantom contains *hard-coded* volumes using CSG solids

MIRD *Phantoms*

• Geometry Description Markup Language (GDML) ⁵ files are available for reference, but are not used for the simulation

ORNL Phantoms

- The Oak Ridge National Laboratory (ORNL) developed early anatomical phantoms from Boolean operations on geometric shapes ⁶
- Whilst phantoms of newborns through to an adult is available, the male and female adult phantoms are only available in Geant4
- The organs of the ORNL phantoms are imported directly from GDML files

Example macro file

/phantom/setPhantomModel ORNLFemale # Can also be ORNLMale, MIRD, MIRDHead, ORNLHead
/phantom/setPhantomSex Female # Can also be Male
/phantom/buildNewPhantom
/run/initialize

⁶ Cristy and Eckerman, 1987. ORNL/TM-8381/VI

MIRD/ORNL: Advanced Analysis

- By default, the simulation outputs the energy deposited in each organ
- To perform custom analysis, the organ volume at a given step point can be obtained from the *G4LogicalVolume*:

```
void SteppingAction::UserSteppingAction(const G4Step* step)
{
    G4String bodyPartName = step->GetPreStepPoint()->GetTouchable()->GetVolume()->GetLogicalVolume()->GetName();
    if (bodyPartName == "Liver")
    {
        // Do something...
    }
}
```

ICRP110 Voxelised Phantoms

- ICRP Report 110⁷ outlined a *voxel* phantom based on medical imaging
- Most organs relevant for radiological assessment are described
- The height of the voxels (z) were scaled to a reference height, whilst the width (x, y) were scaled to the skeletal mass
- Male and female phantoms included:

ICRP110 Voxelised Phantoms

Property	Male	Female		
Height (m)	1.76	1.63		
Mass (kg)	73.0	60.0		
Number of tissue voxels	1,946,375	3,886,020		
Slice thickness (voxel height, mm)	8.0	4.84		
Voxel in-plane resolution (mm)	2.137	1.775		
Voxel volume (mm ³)	36.54	15.25		
Number of columns	254	299		
Number of rows	127	137		
Number of slices	220 (+2)*	346 (+2)*		

⁷ ICRP, 2009. Annals of the ICRP ICRP **39**(2)

- Implemented in a Geant4 advanced example *ICRP110_HumanPhantoms* ⁸
- Created using a parameterised geometry (G4VNestedParameterisation)

ICRP110PhantomConstruction.cc

```
G4VPhysicalVolume* ICRP110PhantomConstruction::Construct()
```

```
new G4PVReplica(yRepName, logYRep, fContainer_logic, kYAxis, fNVoxelY,
fVoxelHalfDimY*2.);
```

new G4PVReplica(xRepName, logXRep, logYRep, kXAxis, fNVoxelX, fVoxelHalfDimX*2.);

```
ICRP110PhantomNestedParameterisation* param = new
ICRP110PhantomNestedParameterisation(halfVoxelSize, pMaterials);
```

new G4PVParameterised("phantom", // their name logicVoxel, // their logical volume logXRep, // Mother logical volume kZAxis, // Are placed along this axis fNVoxelZ, // Number of cells param); // Parameterisation

⁸ Large et. al., 2020. *Journal of Physics: Conference Series (MMND ITRO 2020)*

• Due to the nested parameterisation, the result is a *voxel* structure:


```
G4Material* ICRP110PhantomNestedParameterisation::
ComputeMaterial(G4VPhysicalVolume* physVol, const G4int
iz,const G4VTouchable* parentTouch)
{
    G4int ix = parentTouch->GetCopyNumber(0);
    G4int iy = parentTouch->GetCopyNumber(1);
    G4int iz = physVol->GetCopyNo();
    ...
    return material;
}
```



```
G4Material* ICRP110PhantomNestedParameterisation::
ComputeMaterial(G4VPhysicalVolume* physVol, const G4int
iz,const G4VTouchable* parentTouch)
{
    G4int ix = parentTouch->GetCopyNumber(0);
    G4int iy = parentTouch->GetCopyNumber(1);
    G4int iz = physVol->GetCopyNo();
    ...
    return material;
}
```



```
G4Material* ICRP110PhantomNestedParameterisation::
ComputeMaterial(G4VPhysicalVolume* physVol, const G4int
iz,const G4VTouchable* parentTouch)
{
    G4int ix = parentTouch->GetCopyNumber(0);
    G4int iy = parentTouch->GetCopyNumber(1);
    G4int iz = physVol->GetCopyNo();
    ...
    return material;
}
```



```
G4Material* ICRP110PhantomNestedParameterisation::
ComputeMaterial(G4VPhysicalVolume* physVol, const G4int
iz,const G4VTouchable* parentTouch)
{
    G4int ix = parentTouch->GetCopyNumber(0);
    G4int iy = parentTouch->GetCopyNumber(1);
    G4int iz = physVol->GetCopyNo();
    ...
    return material;
}
```


The material of the individual voxels is handled by *ICRP110PhantomNestedParameterisation*

${\it ICRP110PhantomNestedParameterisation.cc}$

```
G4Material* ICRP110PhantomNestedParameterisation::
ComputeMaterial(G4VPhysicalVolume* physVol, const G4int iz,const G4VTouchable*
parentTouch)
{
    G4int ix = parentTouch -> GetReplicaNumber(0);
    G4int iy = parentTouch -> GetReplicaNumber(1);
    G4int copyID = ix + fnX*iy + fnX*fnY*iz;
    std::size_t matIndex = GetMaterialIndex(copyID);
    static G4Material* mate = nullptr;
    mate = fMaterials[matIndex];
```

This is a unique integer for each voxel

fMaterials stores the materials for each organ

return mate;

ICRP110 Data Definitions

• The data files consist of:

ICRP110 Data

- Each slice file is a different layer of voxels
- The voxel nature of the phantom makes it easy to select specific slices

ICRP110 Sections

• The included macro files allow for easy implementation of specific sections:

• Can also select custom slices by modifying the number of *z* slices and the data files in the metadata file

ICRP145 Phantom

- To overcome limited voxel resolution, tetrahedral mesh phantoms were introduced in ICRP Report 145⁸
- In this phantom:
 - All organs are completely enclosed (including the skin)
 - Detailed models of tubular intestines, spinal structures, lymphatic nodes, eye lens', skin layers

⁸ ICRP, 2009. Annals of the ICRP ICRP **49**(3)

ICRP145 Phantom

The tetrahedral mesh phantoms were generated from the voxel phantoms using a smoothing and adjustment process:

Doses in each organ computed as standard output:

======================================	umber of event proce	essed : 10000000	
organ ID	Urgan Mass (g)	Dose (Gy/source)	Relative Error
төө	8.683	1.823e-17	0.214
200	8.683	2.226e-17	0.184
300	0.022	1.212e-17	0.623
301	0.090	1.298e-17	0.594
302	0.028	1.613e-17	0.553
303	11.291	2.867e-17	0.163
400	0.141	3.189e-17	0.582
401	0.390	1.916e-17	0.400
402	0.098	1.795e-17	0.367
403	0.049	2.251e-17	0.450
404	0.098	2.337e-17	0.340
405	28.808	2.232e-17	0.105

⁸ ICRP, 2009. Annals of the ICRP **49**(3)

ICRP145 Data Definitions

• The data files consist of:

Vertices File						
.node						
1279642	300					
0	1.728173	0.274099	33.475464			
1	1.550969	0.481751	33.402969			
2	1.788876	0.210670	33.374435			
3	1.819830	0.170031	33.444263			
4	2.168805	3.718461	33.734196			
5	2.124705	3.613879	33.695755			
6	2.047916	3.682885	33.755173			
7	2.105053	3.762564	33.829369			
8	2.268390	3.746360	33.721901			
9	2.237944	3.665057	33.678017			
10	1.512970	3.144052	34.097740			
11	1.445530	2.994499	34.030819			
12	1.479287	3.046279	34.258648			
		•				
Vertex	rtex x, y and z position					
ID		_				

ICRP145 Data

- The data is imported through the *TETModelImport* class
- Through small modifications, the import can be restricted from tetrahedra of certain organ ids or positions
- The *organ id* of a volume can be obtained using the tetrahedron *copy number*

Bone Dose Computations

- All phantoms listed do not directly segment active (red) bone marrow
- Instead, the ICRP Report 116⁹ describes an estimation of the dose to active marrow using doses to the spongiosa:
- For each bone site x the total active marrow dose $D_{skel}(AM)$ is the total dose to the spongiosa at each site D(SP, x) scaled by the fractional mass of active marrow at each site m(AM, x)/m(AM):

$$D_{skel}(AM) = \sum_{x} \frac{m(AM, x)}{m(AM)} D(SP, x)$$

⁹ ICRP, 2010. Annals of the ICRP **40**(2-5)

Bone Dose Computations

• Active marrow masses available in ICRP 110 and ICRP 116:

	Bone site	Reference adult male				Reference adult female			
Organ		Active marrow		Endosteum		Active marrow		Endosteum	
		Mass (g)	Mass (%)	Mass (g)	Mass (%)	Mass (g)	Mass (%)	Mass (g)	Mass (%)
14	Humeri, upper half – spongiosa	26.9	2.3	9.41	1.7	20.7	2.3	7.16	1.8
15	Humeri, upper half - medullary cavities			0.19	0.0			0.14	0.0
17	Humeri, lower half - spongiosa			11.25	2.1			8.32	2.0
18	Humeri, lower half - medullary cavities			0.25	0.0			0.19	0.0
20	Lower arm bones - spongiosa			16.31	3.0			12.03	3.0
21	Lower arm bones - medullary cavities			0.09	0.0			0.07	0.0
23	Wrists and hands - spongiosa			12.50	2.3			7.10	1.7
25	Clavicles – spongiosa	9.3	0.8	2.50	0.5	7.2	0.8	1.90	0.5
27	Cranium – spongiosa	88.9	7.6	83.40	15.3	68.4	7.6	64.20	15.8
29	Femora, upper half - spongiosa	78.4	6.7	43.34	8.0	60.3	6.7	33.53	8.2
30	Femora, upper half - medullary cavities			0.86	0.2			0.67	0.2
32	Femora, lower half - spongiosa			47.83	8.8			23.67	5.8
33	Femora, lower half - medullary cavities			0.67	0.1			0.33	0.1
35	Lower leg bones – spongiosa			87.38	16.1			79.91	19.6
36	Lower leg bones - medullary cavities			5.02	0.9			4.59	1.1
38	Ankles and feet - spongiosa			42.20	7.8			24.40	6.0
40	Mandible – spongiosa	9.4	0.8	2.00	0.4	7.2	0.8	1.60	0.4
42	Pelvis – spongiosa	205.2	17.5	51.70	9.5	157.5	17.5	39.70	9.7
44	Ribs – spongiosa	188.8	16.1	29.80	5.5	144.9	16.1	22.90	5.6
46	Scapulae – spongiosa	32.8	2.8	9.80	1.8	25.2	2.8	7.60	1.9
48	Cervical spine – spongiosa	45.6	3.9	11.50	2.1	35.1	3.9	8.80	2.2
50	Thoracic spine – spongiosa	188.8	16.1	26.90	4.9	144.9	16.1	20.60	5.1
52	Lumbar spine – spongiosa	143.9	12.3	23.40	4.3	110.7	12.3	18.00	4.4
54	Sacrum – spongiosa	115.9	9.9	20.60	3.8	89.1	9.9	15.80	3.9
56	Sternum – spongiosa	36.3	3.1	5.50	1.0	27.9	3.1	4.30	1.1
	Totals	1170.2	100	544.4	100	899.1	100	407.50	100

Table 3.2. Skeletal tissue masses in the ICRP reference adult male and adult female computational phantoms.

⁹ ICRP, 2010. Annals of the ICRP **40**(2-5)

Source: ICRP, 2009. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP 39(2).

Extra Considerations

- The tetrahedral (volume) phantom geometry has large *memory* requirements (~ 11 GB¹⁰)
- Supplementary materials provided with the ICRP145 report also gives a *polygonal* (surface) mesh
 - Can be useful for visualisation or manipulation using other software
- The tetrahedral mesh compared to the polygonal mesh ¹⁰:
 - More efficient for particle transport (~2600 times faster)
 - Less time for initialisation (~ 0.5 times)
 - Requires more memory (11 GB vs 1.3 GB)

Extra Considerations

- Polygonal meshes visualized:
- Since the tetrahedral mesh is generated from the polygonal mesh, the polygonal mesh can be used for surface calculations

