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Need For Geant4 Parallelization
p Larger and more complex Geant4 simulation scale, 

longer time users spend.
n Users desire to reduce simulation time and memory usage.

p CPU Histories
n Single-core CPU performance increased following 

Moore’s law until the 2000s
n No more increases in CPU frequency due to power 

consumption issues
n Multi-core CPU era

p The number of transistors per chip continues to grow
n ex) AMD EPYC 9654 CPU : 96 cores 

p Single core performance growing slowly and less memory per core
➜ Applications need to introduce parallelism

p Geant4 has supported multi-threading since ver. 10
n Heavy simulations using multi-threading mode can be 

accelerated with reducing memory usage
n Users should be familiar with multi-thread programing
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Process and Thread
p Process

n Active programs
p Office Software, Web Browser, Simulations, etc.

n Separate from other processes to avoid 
interference
p Take its own memory space and do not share it with 

other processes

p Thread
n Subsets of execution within a process

p At least a single thread will be created and assigned 
to a CPU core

p A Geant4 application with sequential mode runs as 
a single-thread process.

n Multi-thread Process
p Running multiple threads within a process
p Share memory space among threads

n Efficient execution but potential data conflict
n A thread-safe program is vital
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Geant4 Parallelism
p Two options of parallelism in Geant4

1. Multi-Processing
2. Multi-Threading (MT)
➜ Select one depending on the resources required

p Requiring small memory
n If total memory usage for your application 

fits the capacity, multi-processing is a good choice
n Run as multiple jobs simultaneously
n Write application codes in the traditional way 

(= sequential mode)
p No need for multi-thread programming 

p Requiring massive memory
n You should choose multi-threading
n Reduce memory usage and increase active CPU cores

p Invariant data : Shared objects among threads
p Transient data : Thread-local objects

n Competency in multi-thread programming is necessary
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Basis for Geant4 Multi-Threading Mode (1)
p Geant4 adopts event parallelism

n Geant4 processes each event independently. So, in the Geant4 multi-threading mode, multiple 
threads execute event processing simultaneously. 

p “Master” and “Worker” threads
n Master thread controls Geant4 simulation overall

p Initialize shared data like geometry, physics tables, etc.
p Create worker threads to run event processing, and then merge simulation results

n Worker threads execute event processing
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Basis for Geant4 Multi-Threading Mode (2)
Process Flow for the G4 Multi-threading mode
p The master thread creates a random number array that is loaded 

by worker threads in event processing.

p Also, the master thread initializes shared objects which are 
referred to among worker threads.
n Geometry, Physics Tables (= Cross-section Tables), Particle Definition, etc.
n Stable during the event loop
n Reducing memory consumption

p Each worker thread will be created by the master thread. It has its 
own G4Run instance and starts event processing.
n Store simulation results locally

p Transient objects like event, track, step, hit, etc., 
p Sensitive Detector, User Actions (TrackAction, StepAction, …), etc.

p After the completion of worker threads, the master thread will 
merge results computed by worker threads.
n Command line scorer and G4tools automatically merge them
n You can use your own scorer, but you need to have a deep understanding 

of multi-thread programming.
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User Actions in Multi-Threading Mode
p Users should understand how user actions will work in the multi-threading mode.
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Migration to Multi-Threading Mode
p “Sequential” and “Multi-threading” modes

n Sequential Mode (=Traditional mode): Run as a single-thread process
n Multi-threading Mode: Using Geant4 Multi-threading libraries

p In ver. 11, the two modes are available in a single Geant4 library set.
n NOTE: In ver. 10, a separate library is needed to be built for each mode.

p Migration to multi-threading mode for an existing application
1. Replace “run manager” with one for multi-thread mode in the main program
2. Mandatory objects like geometry, physics lists and UserActions should be 

configured through the UserActionInitialization class
3. Set sensitive detector or magnetic field using `ConstructSDandField()` if necessary
4. Merge simulation results obtained by worker thread processing

p Geant4 Scoring Tools (Command-line scorer, G4tool)
p User-defined scorer

n Need multi-thread programming skills

2023/9/28 Introduction to G4 Multi-Threading 8



KEK
High Energy Accelerator Research Organization

STEP1: Main Program
p Replace “run manager” with one for multi-threading mode in the main program

n Sequential Mode     ➜ Use G4RunManager
n Multi-Thread Mode ➜ Replace with G4RunManagerFactory::CreateRunManager()

p Automatically set multi-threading mode
p The number of worker threads can be adjusted by using `SetNumberOfThreads()`
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//++++++++++++++++++++++++++++++++++++
// Geant4 Application: Tutorial ...
//++++++++++++++++++++++++++++++++++++

#include "Geometry.hh"
#include "UserActionInitialization.hh"

#include "G4RunManager.hh"
#include "G4UImanager.hh"
#include "G4VisExecutive.hh"
#include "G4UIExecutive.hh"
#include "FTFP_BERT.hh"

//------------------------------------
int main( int argc, char** argv )

//------------------------------------
{

// Construct a run manager
auto runManager = new G4RunManager;

......

//++++++++++++++++++++++++++++++++++++
// Geant4 Application: Tutorial ...
//++++++++++++++++++++++++++++++++++++

#include "Geometry.hh"
#include "UserActionInitialization.hh"

#include "G4RunManagerFactory.hh"
#include "G4UImanager.hh"
#include "G4VisExecutive.hh"
#include "G4UIExecutive.hh"
#include "FTFP_BERT.hh"

//------------------------------------
int main( int argc, char** argv )

//------------------------------------
{

// Construct a run manager
auto runManager = G4RunManagerFactory::CreateRunManager();
// Set the number of worker threads
runManager->SetNumberOfThreads(4);
......

Sequential Mode Multi-Threading Mode

Replace

Replace
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STEP2: User Actions
p Similarly to the sequential mode, we should register for “user actions” 

through the UserActionInitialization class. 
p When registering for “user actions,” switch two types of “build” functions 

depending on thread type.
n `Build()` : For Worker Threads

p Register for PrimaryGeneratorAction, RunAction, EventAction, etc.
n `BuildForMaster()` : For Master Thread

p Register for RunAction to the master thread if necessary.
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//------------------------------------------
class UserActionInitialization : public   

G4VUserActionInitialization
//------------------------------------------
{

public:
UserActionInitialization();
virtual ~UserActionInitialization();

virtual void Build() const override;
virtual void BuildForMaster() const override; 

};

//--------------------------------------------------------
void UserActionInitialization::Build() const
{

SetUserAction(new PrimaryGeneratorAction);   
SetUserAction(new RunAction); 
SetUserAction(new EventAction);
SetUserAction(new SteppingAction);

}

//--------------------------------------------------------
void UserActionInitialization::BuildForMaster() const
{

SetUserAction(new RunActionForMaster);
}

UserActionInitialization.hh UserActionInitialization.cc

Register for “run action” 
to the master thread

Register for “user actions” 
to worker threads
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STEP3: Detector Construction
p Geant4 multi-thread mode handles two types of data objects:

n Shared Objects
p Stable during event processing ➜ Read-only objects
p Shared among master and worker threads

n Thread-local Objects
p Each worker thread has its own local object that never interferes with the other threads.

➜ Users should know which types each data is categorized.

p Geometry data consists of two types of objects above. Users have to switch two functions 
to define them properly.
n Shared Objects: 

p Volumes, materials, and visualization attributes
p G4VUserDetectorConstruction::Construct()

n Thread-local Objects: 
p Sensitive detector, electromagnetic field, etc.
p G4VUserDetectorConstruction::ConstructSDandField()
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//--------------------------------------------------
class Geometry : public G4VUserDetectorConstruction
//--------------------------------------------------
{

public:
DetectorConstruction();

~DetectorConstruction() override;

G4VPhysicalVolume* Construct() override;
void ConstructSDandField() override;

};

Geometry.hh

//--------------------------------------------------
G4VPhysicalVolume* Geometry::Constuct()
{

// setup for simulation geometry (->Shared Object)
...

return world_pv;
}

//--------------------------------------------------
void Geometry::ConstructionSDandField()
{

// setup for sensitive detector (->Thread-local)
auto sd = new SensitiveDetector();
SetSensitiveDetector("LogVol_SD", sd);

};

Geometry.cc01
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STEP4: Scoring
p Geant4 Scoring Tools

n Command-line Scorer: For medicine
p Record and marge “tally” (ex. energy deposits) automatically

n G4Accumulable: For HEP experiments
p Based on Historgam/Ntuple for the ROOT Analysis Tool
p See: https://onl.sc/Rp5dSJ5

p User-defined Scorer
n No “prescriptions” for a user-defined scorer that fits all use cases

p Need to write a program based on your purpose
p Should avoid mutual exclusion, which may become a time penalty, as far as possible

n In the next two slides, show an example of a user-defined scorer using a 
Sensitive Detector class

2023/9/28 Introduction to G4 Multi-Threading 12

https://onl.sc/Rp5dSJ5


KEK
High Energy Accelerator Research Organization

User-Defined Scorer (1)
p STEP1: Data Filling by Worker Threads

n Sensitive Detector is a thread-local object.
p `ProcessHits()` will be invoked by each worker thread in event 

processing, which gets an energy deposit and fills it in the buffer.
n Worker threads have their own buffer to store tally (cf. Tally 

class below), avoiding conflicts and mutual exclusions.
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//-----------------------------------------
class Tally
//-----------------------------------------
{
public:

Tally(G4int num_threads)
{

edep_buffer.resize(num_threads, 0.0);
}
~Tally() = default;

void AccumEdep(G4int id, G4double edep)
{

edep_buffer[id] += edep;
}

G4double GetEdep(G4int id) const
{

return edep_buffer[id];
}

private:
std::vector<G4double> edep_buffer;

};

To avoid data conflict, 
each worker thread 
has its own buffer to 
score tally (energy 
deposits).

//----------------------------------------------------------
class SensitiveDetector : public G4VSensitiveDetector
//----------------------------------------------------------
{
public:

SensitiveDetector(G4String);
~SensitiveDetector() override;

void   Initialize(G4HCofThisEvent*) override;
G4bool ProcessHits(G4Step*, G4TouchableHistory*) override;
void   EndOfEvent(G4HCofThisEvent*) override;

private:
Tally* tally;

};

SensitiveDetector.hh

//----------------------------------------------------------
G4bool SensitiveDetector::ProcessHits(

G4Step* step, G4TouchableHisttory*)
{

// get worker thread id
auto id = G4Threading::G4GetThreadId();
// get energy deposit and fill it
auto edep = step->GetTotalEnergyDeposit();
tally->AccumEdep(id, edep);

}

SensitiveDetector.cc

Tally.hh
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User-Defined Scorer (2)
p STEP2: Data Gathering by Master Thread

n After completion of all worker threads, the master thread 
invokes `EndOfRunAction()` to gather energy deposits 
stored in buffers of the worker threads

n Accumulate the tally from worker threads sequentially
p No data conflicts
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//-------------------------------------------------------
void RunAction::EndOfRunAction(const G4Run*)
{

// Master thread executes data gathering
if (IsMaster()) {

// get the number of worker threads
auto num_threads = 

G4RunManager::GetRunManager()->GetNumberOfThreads();

// calculate total energy deposit
double tot_edep{0.0};
for (auto id = 0; id < num_threads; id++) {

tot_edep += tally->GetEdep(id);
}

}
}

//-----------------------------------------
class Tally
//-----------------------------------------
{
public:

Tally(G4int num_threads)
{

edep_buffer.resize(num_threads, 0.0);
}
~Tally() = default;

void AccumEdep(G4int id, G4double edep)
{

edep_buffer[id] += edep;
}

G4double GetEdep(G4int id) const
{

return edep_buffer[id];
}

private:
std::vector<G4double> edep_buffer;

};

Tally.hhRunAction.cc
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G4Bench
p Benchmark Application for Geant4

n https://github.com/koichi-murakami/g4bench2
p Support Geant4 version 11

n Three types of benchmarks
p ecal/hcal: electromagnetic/hadronic shower simulation
p vgeo: water phantom simulation for voxel geometry

n Learn about user-defined scorers
in multi-thread mode

n RIGHT FIG: Confirm linear performance 
gain as increasing thread numbers
p EPS Score = Event Numbers per Second
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References for Multi-Threading
p Geant4 User’s Guide 

n For Toolkit Developers: https://onl.sc/kA1DWg2
p Detailed information for event processing in parallel

n Geant4 Examples: https://onl.sc/AALuain
p All basic examples B1-B5 have been migrated to multi-threading

p Geant4 IN2P3 and ED PHENIICS Tutorial 2023 @ IJCLab
n https://geant4-ed-project.pages.in2p3.fr/geant4-ed-web/presentations/

p Geant4 Advanced Course 2022 @ CERN
n https://indico.cern.ch/event/1172490/contributions/4924351/

p Geant4 Japanese Tutorial 2022 @ Kyushu University
n https://wiki.kek.jp/x/TQIZDg
n In Japanese
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