
KEK
High Energy Accelerator Research Organization

Introduction to
Geant4 Multi-Threading

Geant4 Training Course in Medicine 2023
@ Hokkaido University, Sapporo, Japan

2023/9/28
Shogo OKADA (KEK-CRC)

2023/9/28 Introduction to G4 Multi-Threading 1

KEK
High Energy Accelerator Research Organization

Need For Geant4 Parallelization
p Larger and more complex Geant4 simulation scale,

longer time users spend.
n Users desire to reduce simulation time and memory usage.

p CPU Histories
n Single-core CPU performance increased following

Moore’s law until the 2000s
n No more increases in CPU frequency due to power

consumption issues
n Multi-core CPU era

p The number of transistors per chip continues to grow
n ex) AMD EPYC 9654 CPU : 96 cores

p Single core performance growing slowly and less memory per core
➜ Applications need to introduce parallelism

p Geant4 has supported multi-threading since ver. 10
n Heavy simulations using multi-threading mode can be

accelerated with reducing memory usage
n Users should be familiar with multi-thread programing

2023/9/28 Introduction to G4 Multi-Threading 2

Detector Simulation for HEP
(ALTAS Experiment)

Microdosimetry Simulation
by Geant4-DNA

KEK
High Energy Accelerator Research Organization

Process and Thread
p Process

n Active programs
p Office Software, Web Browser, Simulations, etc.

n Separate from other processes to avoid
interference
p Take its own memory space and do not share it with

other processes

p Thread
n Subsets of execution within a process

p At least a single thread will be created and assigned
to a CPU core

p A Geant4 application with sequential mode runs as
a single-thread process.

n Multi-thread Process
p Running multiple threads within a process
p Share memory space among threads

n Efficient execution but potential data conflict
n A thread-safe program is vital

2023/9/28 Introduction to G4 Multi-Threading 3

Thread #1 Thread #2 Thread #3

Shared Memory Space

Thread

Memory Space

Single-Thread Process

Multi-Thread Process

Multi-cores
CPU

Threads will be assigned to empty
cores of CPU by scheduler

KEK
High Energy Accelerator Research Organization

Geant4 Parallelism
p Two options of parallelism in Geant4

1. Multi-Processing
2. Multi-Threading (MT)
➜ Select one depending on the resources required

p Requiring small memory
n If total memory usage for your application

fits the capacity, multi-processing is a good choice
n Run as multiple jobs simultaneously
n Write application codes in the traditional way

(= sequential mode)
p No need for multi-thread programming

p Requiring massive memory
n You should choose multi-threading
n Reduce memory usage and increase active CPU cores

p Invariant data : Shared objects among threads
p Transient data : Thread-local objects

n Competency in multi-thread programming is necessary

2023/9/28 Introduction to G4 Multi-Threading 4

Active (12)

W
ith

 M
T

Active (7) Inactive (5)

W
ith

ou
t M

T

RED: Invariant Data
p Detector Geometry and Physics Tables, etc.
p Stable in event processing

GREEN: Transient Data
p Tracks, Hits, etc.
p Dynamically changed in event loop

MEMORY
SPACE

Active (12)

AVAILABLE
CORES (12)W

ith
ou

t M
T

Due to the lack of
memory space,
cannot use all cores

Small memory usage ➜ Multi-Processing

Massive memory usage ➜ Multi-Threading

Shrink memory
usage and increase
active cores

KEK
High Energy Accelerator Research Organization

Basis for Geant4 Multi-Threading Mode (1)
p Geant4 adopts event parallelism

n Geant4 processes each event independently. So, in the Geant4 multi-threading mode, multiple
threads execute event processing simultaneously.

p “Master” and “Worker” threads
n Master thread controls Geant4 simulation overall

p Initialize shared data like geometry, physics tables, etc.
p Create worker threads to run event processing, and then merge simulation results

n Worker threads execute event processing

2023/9/28 Introduction to G4 Multi-Threading 5

Start
Geant4

Initialize Geometry,
Physics Tables, etc. Start Event Processing End

Geant4

Start Worker
Thread

Thread create Thread join

/run/
initialize

/run/
beamOn

/run/initialize /run/beamOn

M
as

te
r T

hr
ea

d

Worker Thread #1W
or

ke
r T

hr
ea

ds Start Event Processing
by Worker Thread

Initialize Geometry,
Physics Tables, etc.

Start Worker
Thread

/run/initialize /run/beamOn

Worker Thread #2

Start Event Processing
by Worker Thread

Initialize Geometry,
Physics Tables, etc.

Start Worker
Thread

/run/initialize /run/beamOn

Worker Thread #3

Start Event Processing
by Worker Thread

Initialize Geometry,
Physics Tables, etc.

KEK
High Energy Accelerator Research Organization

Basis for Geant4 Multi-Threading Mode (2)
Process Flow for the G4 Multi-threading mode
p The master thread creates a random number array that is loaded

by worker threads in event processing.

p Also, the master thread initializes shared objects which are
referred to among worker threads.
n Geometry, Physics Tables (= Cross-section Tables), Particle Definition, etc.
n Stable during the event loop
n Reducing memory consumption

p Each worker thread will be created by the master thread. It has its
own G4Run instance and starts event processing.
n Store simulation results locally

p Transient objects like event, track, step, hit, etc.,
p Sensitive Detector, User Actions (TrackAction, StepAction, …), etc.

p After the completion of worker threads, the master thread will
merge results computed by worker threads.
n Command line scorer and G4tools automatically merge them
n You can use your own scorer, but you need to have a deep understanding

of multi-thread programming.

2023/9/28 Introduction to G4 Multi-Threading 6

Geometry,
Physics Tables, etc.

0 1 2 3 4 5 N

Thread Local
Initialization

Event
Processing
by Worker

Thread

End Local Run

End Global Run and Merge
Simulation Results by Master Thread

Thread Local
Initialization

Event
Processing
by Worker

Thread

End Local Run

Thread Local
Initialization

Event
Processing
by Worker

Thread

End Local Run

Shared Objects

Array for Random Number Seeds

KEK
High Energy Accelerator Research Organization

User Actions in Multi-Threading Mode
p Users should understand how user actions will work in the multi-threading mode.

2023/9/28 Introduction to G4 Multi-Threading 7

main()

thread
create

thread
join

Master Thread

G4TaskRunManger
MyDetectroConstruction

MyPhysicsList

MyActionInitializaton
MyRunAction

_Master MyRunAction_Master

MyRunAction

MyEventAction

MyStackingAction

MyTrackingAction

MySteppingAction

User
User Action Class

User Initialization Class
Configuration by User

Duplicated

Worker Thread #1

MyRunAction

MyEventAction

MyStackingAction

MyTrackingAction

MySteppingAction

Event
Loop

G4Worker
RunManager MyRunAction

MyEventAction

MyStackingAction

MyTrackingAction

MySteppingAction

Event
Loop

G4Worker
RunManager MyRunAction

MyEventAction

MyStackingAction

MyTrackingAction

MySteppingAction

Event
Loop

G4Worker
RunManager

Worker Thread #2 Worker Thread #3

KEK
High Energy Accelerator Research Organization

Migration to Multi-Threading Mode
p “Sequential” and “Multi-threading” modes

n Sequential Mode (=Traditional mode): Run as a single-thread process
n Multi-threading Mode: Using Geant4 Multi-threading libraries

p In ver. 11, the two modes are available in a single Geant4 library set.
n NOTE: In ver. 10, a separate library is needed to be built for each mode.

p Migration to multi-threading mode for an existing application
1. Replace “run manager” with one for multi-thread mode in the main program
2. Mandatory objects like geometry, physics lists and UserActions should be

configured through the UserActionInitialization class
3. Set sensitive detector or magnetic field using `ConstructSDandField()` if necessary
4. Merge simulation results obtained by worker thread processing

p Geant4 Scoring Tools (Command-line scorer, G4tool)
p User-defined scorer

n Need multi-thread programming skills

2023/9/28 Introduction to G4 Multi-Threading 8

KEK
High Energy Accelerator Research Organization

STEP1: Main Program
p Replace “run manager” with one for multi-threading mode in the main program

n Sequential Mode ➜ Use G4RunManager
n Multi-Thread Mode ➜ Replace with G4RunManagerFactory::CreateRunManager()

p Automatically set multi-threading mode
p The number of worker threads can be adjusted by using `SetNumberOfThreads()`

2023/9/28 Introduction to G4 Multi-Threading 9

//++++++++++++++++++++++++++++++++++++
// Geant4 Application: Tutorial ...
//++++++++++++++++++++++++++++++++++++

#include "Geometry.hh"
#include "UserActionInitialization.hh"

#include "G4RunManager.hh"
#include "G4UImanager.hh"
#include "G4VisExecutive.hh"
#include "G4UIExecutive.hh"
#include "FTFP_BERT.hh"

//------------------------------------
int main(int argc, char** argv)

//------------------------------------
{

// Construct a run manager
auto runManager = new G4RunManager;

......

//++++++++++++++++++++++++++++++++++++
// Geant4 Application: Tutorial ...
//++++++++++++++++++++++++++++++++++++

#include "Geometry.hh"
#include "UserActionInitialization.hh"

#include "G4RunManagerFactory.hh"
#include "G4UImanager.hh"
#include "G4VisExecutive.hh"
#include "G4UIExecutive.hh"
#include "FTFP_BERT.hh"

//------------------------------------
int main(int argc, char** argv)

//------------------------------------
{

// Construct a run manager
auto runManager = G4RunManagerFactory::CreateRunManager();
// Set the number of worker threads
runManager->SetNumberOfThreads(4);
......

Sequential Mode Multi-Threading Mode

Replace

Replace

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22

KEK
High Energy Accelerator Research Organization

STEP2: User Actions
p Similarly to the sequential mode, we should register for “user actions”

through the UserActionInitialization class.
p When registering for “user actions,” switch two types of “build” functions

depending on thread type.
n `Build()` : For Worker Threads

p Register for PrimaryGeneratorAction, RunAction, EventAction, etc.
n `BuildForMaster()` : For Master Thread

p Register for RunAction to the master thread if necessary.

2023/9/28 Introduction to G4 Multi-Threading 10

//--
class UserActionInitialization : public

G4VUserActionInitialization
//--
{

public:
UserActionInitialization();
virtual ~UserActionInitialization();

virtual void Build() const override;
virtual void BuildForMaster() const override;

};

//--
void UserActionInitialization::Build() const
{

SetUserAction(new PrimaryGeneratorAction);
SetUserAction(new RunAction);
SetUserAction(new EventAction);
SetUserAction(new SteppingAction);

}

//--
void UserActionInitialization::BuildForMaster() const
{

SetUserAction(new RunActionForMaster);
}

UserActionInitialization.hh UserActionInitialization.cc

Register for “run action”
to the master thread

Register for “user actions”
to worker threads

01
02
03
04
05
06
07
08
09
10
11
12

01
02
03
04
05
06
07
08
09
10
11
12
13
14

KEK
High Energy Accelerator Research Organization

STEP3: Detector Construction
p Geant4 multi-thread mode handles two types of data objects:

n Shared Objects
p Stable during event processing ➜ Read-only objects
p Shared among master and worker threads

n Thread-local Objects
p Each worker thread has its own local object that never interferes with the other threads.

➜ Users should know which types each data is categorized.

p Geometry data consists of two types of objects above. Users have to switch two functions
to define them properly.
n Shared Objects:

p Volumes, materials, and visualization attributes
p G4VUserDetectorConstruction::Construct()

n Thread-local Objects:
p Sensitive detector, electromagnetic field, etc.
p G4VUserDetectorConstruction::ConstructSDandField()

2023/9/28 Introduction to G4 Multi-Threading 11

//--
class Geometry : public G4VUserDetectorConstruction
//--
{

public:
DetectorConstruction();

~DetectorConstruction() override;

G4VPhysicalVolume* Construct() override;
void ConstructSDandField() override;

};

Geometry.hh

//--
G4VPhysicalVolume* Geometry::Constuct()
{

// setup for simulation geometry (->Shared Object)
...

return world_pv;
}

//--
void Geometry::ConstructionSDandField()
{

// setup for sensitive detector (->Thread-local)
auto sd = new SensitiveDetector();
SetSensitiveDetector("LogVol_SD", sd);

};

Geometry.cc01
02
03
04
05
06
07
08
09
10
11

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

KEK
High Energy Accelerator Research Organization

STEP4: Scoring
p Geant4 Scoring Tools

n Command-line Scorer: For medicine
p Record and marge “tally” (ex. energy deposits) automatically

n G4Accumulable: For HEP experiments
p Based on Historgam/Ntuple for the ROOT Analysis Tool
p See: https://onl.sc/Rp5dSJ5

p User-defined Scorer
n No “prescriptions” for a user-defined scorer that fits all use cases

p Need to write a program based on your purpose
p Should avoid mutual exclusion, which may become a time penalty, as far as possible

n In the next two slides, show an example of a user-defined scorer using a
Sensitive Detector class

2023/9/28 Introduction to G4 Multi-Threading 12

https://onl.sc/Rp5dSJ5

KEK
High Energy Accelerator Research Organization

User-Defined Scorer (1)
p STEP1: Data Filling by Worker Threads

n Sensitive Detector is a thread-local object.
p `ProcessHits()` will be invoked by each worker thread in event

processing, which gets an energy deposit and fills it in the buffer.
n Worker threads have their own buffer to store tally (cf. Tally

class below), avoiding conflicts and mutual exclusions.

2023/9/28 Introduction to G4 Multi-Threading 13

//---
class Tally
//---
{
public:

Tally(G4int num_threads)
{

edep_buffer.resize(num_threads, 0.0);
}
~Tally() = default;

void AccumEdep(G4int id, G4double edep)
{

edep_buffer[id] += edep;
}

G4double GetEdep(G4int id) const
{

return edep_buffer[id];
}

private:
std::vector<G4double> edep_buffer;

};

To avoid data conflict,
each worker thread
has its own buffer to
score tally (energy
deposits).

//--
class SensitiveDetector : public G4VSensitiveDetector
//--
{
public:

SensitiveDetector(G4String);
~SensitiveDetector() override;

void Initialize(G4HCofThisEvent*) override;
G4bool ProcessHits(G4Step*, G4TouchableHistory*) override;
void EndOfEvent(G4HCofThisEvent*) override;

private:
Tally* tally;

};

SensitiveDetector.hh

//--
G4bool SensitiveDetector::ProcessHits(

G4Step* step, G4TouchableHisttory*)
{

// get worker thread id
auto id = G4Threading::G4GetThreadId();
// get energy deposit and fill it
auto edep = step->GetTotalEnergyDeposit();
tally->AccumEdep(id, edep);

}

SensitiveDetector.cc

Tally.hh

Master Thread

Worker
Thread #0

Local
Buffer

Worker
Thread #1

Worker
Thread #2

Local
Buffer

Local
Buffer

Invoke
ProcessHits()

+ΔE

Worker
Thread #N-1

Local
Buffer

No conflicts and
mutual exclusion

+ΔE +ΔE +ΔE

Total
Edep

Invoke
EndOfRunAction()

Compute total
energy deposit

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

01
02
03
04
05
06
07
08
09
10
11
12
13
14

01
02
03
04
05
06
07
08
09
10

STEP1: Accumulate Energy Deposits by Worker Threads

…

KEK
High Energy Accelerator Research Organization

User-Defined Scorer (2)
p STEP2: Data Gathering by Master Thread

n After completion of all worker threads, the master thread
invokes `EndOfRunAction()` to gather energy deposits
stored in buffers of the worker threads

n Accumulate the tally from worker threads sequentially
p No data conflicts

2023/9/28 Introduction to G4 Multi-Threading 14

//---
void RunAction::EndOfRunAction(const G4Run*)
{

// Master thread executes data gathering
if (IsMaster()) {

// get the number of worker threads
auto num_threads =

G4RunManager::GetRunManager()->GetNumberOfThreads();

// calculate total energy deposit
double tot_edep{0.0};
for (auto id = 0; id < num_threads; id++) {

tot_edep += tally->GetEdep(id);
}

}
}

//---
class Tally
//---
{
public:

Tally(G4int num_threads)
{

edep_buffer.resize(num_threads, 0.0);
}
~Tally() = default;

void AccumEdep(G4int id, G4double edep)
{

edep_buffer[id] += edep;
}

G4double GetEdep(G4int id) const
{

return edep_buffer[id];
}

private:
std::vector<G4double> edep_buffer;

};

Tally.hhRunAction.cc

Master Thread

Worker
Thread #0

Local
Buffer

Worker
Thread #1

Worker
Thread #2

Local
Buffer

Local
Buffer

+ΔE

Worker
Thread #N-1

Local
Buffer

No conflicts and
mutual exclusion

+ΔE +ΔE +ΔE

Total
Edep

…

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

STEP2: Merge by Master Thread

Invoke
ProcessHits()

Invoke
EndOfRunAction()

Compute total
energy deposit

KEK
High Energy Accelerator Research Organization

G4Bench
p Benchmark Application for Geant4

n https://github.com/koichi-murakami/g4bench2
p Support Geant4 version 11

n Three types of benchmarks
p ecal/hcal: electromagnetic/hadronic shower simulation
p vgeo: water phantom simulation for voxel geometry

n Learn about user-defined scorers
in multi-thread mode

n RIGHT FIG: Confirm linear performance
gain as increasing thread numbers
p EPS Score = Event Numbers per Second

2023/9/28 Introduction to G4 Multi-Threading 15

A64FX

M2 Pro

Core i9

Xeon

Correlation between thread numbers and
performance gain in EM shower simulation

https://github.com/koichi-murakami/g4bench2

KEK
High Energy Accelerator Research Organization

References for Multi-Threading
p Geant4 User’s Guide

n For Toolkit Developers: https://onl.sc/kA1DWg2
p Detailed information for event processing in parallel

n Geant4 Examples: https://onl.sc/AALuain
p All basic examples B1-B5 have been migrated to multi-threading

p Geant4 IN2P3 and ED PHENIICS Tutorial 2023 @ IJCLab
n https://geant4-ed-project.pages.in2p3.fr/geant4-ed-web/presentations/

p Geant4 Advanced Course 2022 @ CERN
n https://indico.cern.ch/event/1172490/contributions/4924351/

p Geant4 Japanese Tutorial 2022 @ Kyushu University
n https://wiki.kek.jp/x/TQIZDg
n In Japanese

2023/9/28 Introduction to G4 Multi-Threading 16

https://onl.sc/kA1DWg2
https://onl.sc/AALuain
https://geant4-ed-project.pages.in2p3.fr/geant4-ed-web/presentations/
https://indico.cern.ch/event/1172490/contributions/4924351/
https://wiki.kek.jp/x/TQIZDg

