KEK, IPNS - Phenomenology of Particle Physics Group | Prof. Ryulchiro Kitano Department of Particle and Nuclear Physics The Graduate University for Advanced Studies (SOKENDAI)

Quantum Effects on Neutrino Parameters From a Flavored Gauge Boson

Generating Neutrino Masses via RGE Running at the One-Loop Level KEK-PH2023

Lukas Treuer KEK, IPNS - Phenomenology of Particle Physics Group | Prof. Ryuichiro Kitano Department of Particle and Nuclear Physics The Graduate University for Advanced Studies (SOKENDAI) November 7th, 2023

- Based on Master's thesis at Technical University of Munich, Germany
- Paper in progress with Alejandro Ibarra (TUM)

Background

2 Flavor-Nonuniversal Renormalization of κ and the New Quantum Effect

I Summary and Outlook

4 Backup Slides

Neutrino Physics

Neutrinos massless in the Standard Model (SM), but...

Oscillation experiments (two flavors - Gribov, Pontecorvo, 1968)

$$P_{\nu_a \longrightarrow \nu_b \neq \nu_a} \approx \sin^2 \left(2\theta\right) \, \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$
 (1)

\implies neutrinos do have a mass!

Flavor basis \neq mass basis \implies mixing!

Mass splittings (Esteban et al., 2020): $|\Delta m_{3\ell}^2| = \left|m_{\nu,3}^2 - m_{\nu,1 \text{ or } 2}^2\right| \sim 7 \times 10^{-3} \text{ eV}^2$,

$$\left|\Delta m^2_{21}\right| = \left|m^2_{\nu,\,2} - m^2_{\nu,\,1}\right| \sim 3 \times 10^{-5}\,\mathrm{eV}^2$$

The Weinberg-Operator

Dimension 5 Weinberg-Operator $\mathcal{L}_{\mathcal{K}} \sim \kappa_{gf} \left(l^g \cdot \phi \right) \left(l^f \cdot \phi \right) + \text{h.c.}$ gives neutrino masses after Electroweak Symmetry Breaking (Weinberg, 1979)

Figure 2 Feynman diagram of the Weinberg-Operator Eigenvalues \sim masses

Diagonalize
$$\kappa \longrightarrow U^* \kappa U^{\dagger} = \kappa_{\text{diag}}$$

U: contains mixing angles

Loop corrections to κ ? Different scales of mass generation, production, measurement? $\implies \beta_{\kappa}$, running of neutrino parameters

Renormalization

Part 1/2 - Renormalization Constants and RGEs

- Loop-diagrams divergent \implies need to regularize them
- Cancel divergences via counterterms: $\phi_{\text{Bare}} = \sqrt{Z_{\phi}} \phi \approx \phi + \frac{1}{2} \delta Z_{\phi} \phi$
- Physical observables: dependence on renormalization scale? No!
 - \rightarrow Renormalization Group Equations (RGEs) (Callan, 1970; Symanzik, 1970)

$$0 \stackrel{!}{=} \mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} R\left(Q^2/\mu^2, \,\alpha(\mu^2)\right) = \left(\mu^2 \frac{\partial}{\partial\mu^2} + \underbrace{\mu^2 \frac{\partial\alpha(\mu^2)}{\partial\mu^2}}_{\equiv \beta_\alpha} \frac{\partial}{\partial\alpha(\mu^2)}\right) R\left(Q^2/\mu^2, \,\alpha(\mu^2)\right) \tag{2}$$

Renormalization

Part 2/2 - β -Functions

- RGEs solved by reparametrization with running couplings in $R(1, \alpha(Q^2))$ (Callan, 1970; Symanzik, 1970)
- RGEs of couplings, eta-functions: define $t = \ln \mu^2 / \mu_0^2$

$$\beta_{\alpha} = \frac{\mathrm{d}\alpha}{\mathrm{d}t} \Longrightarrow \alpha(t)$$
 (3)

To obtain β_{α} , solve

$$0 \stackrel{!}{=} \frac{\mathrm{d}}{\mathrm{d}t} \alpha_{\mathrm{Bare}} = \frac{\mathrm{d}}{\mathrm{d}t} f(\alpha, Z_{\alpha}, Z_{\phi_i}) \supset \beta_{\alpha}$$

Loop corrections!

Lukas Treuer | Quantum Effects on Neutrino Parameters From a Flavored Gauge Boson | 2023/11/07

(4)

Background

- **2** Flavor-Nonuniversal Renormalization of κ and the New Quantum Effect
 - One-Loop Effects From a Flavored Gauge Boson
 - The Extended β_{κ} -Function
 - General Calculation of β_{κ}

3 Summary and Outlook

4 Backup Slides

One-Loop Effects From a Flavored Gauge Boson

Part 1/3 - From SM to BSM

Bare coupling
$$\kappa_B = Z_{\phi}^{-\frac{1}{2}} \left(Z_l^T \right)^{-\frac{1}{2}} \left(\kappa + \delta \kappa \right) Z_l^{-\frac{1}{2}} Z_{\phi}^{-\frac{1}{2}}$$

Form of 1-loop RGEs in SM (Babu et al., 1993; Casas et al., 2000; Antusch et al. 2001):

$$\beta_{\mathcal{K}}(t) = \frac{\mathrm{d}\kappa}{\mathrm{d}t} = \delta\kappa_{,1} - \frac{1}{2} \left(\delta Z_{\phi,1} + \delta Z_{l,1}\right)^T \kappa - \frac{1}{2} \kappa \left(\delta Z_{\phi,1} + \delta Z_{l,1}\right)$$
(5)

$$= \alpha \kappa + P^T \kappa + \kappa P \tag{6}$$

Abelian extension of SM gauge group: $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{L_u-L_\tau}$

Effects on Weinberg-Operator's RGEs and neutrino parameters?

One-Loop Effects From a Flavored Gauge Boson

Part 2/3 - Field Renormalization Contributions

Figure 3 Structure of the contribution from the new gauge boson, Z', to the Weinberg-Operator via field renormalization of lepton-doublets

- Two conjugate diagrams, structure corresponds to $\beta_{\mathcal{K}} \supset P^T \mathcal{K} + \mathcal{K} P$
- Expected, fits SM structure $\beta_{\mathcal{K}}(t) = \alpha \mathcal{K} + P^T \mathcal{K} + \mathcal{K} P$

One-Loop Effects From a Flavored Gauge Boson

Part 3/3 - Vertex Correction Contribution and the New Quantum Effect $G^T \kappa G$

Figure 4 Structure of the Z' contribution to the Weinberg-Operator via vertex correction

- One diagram, contribution of form $\beta_{\mathcal{K}} \supset G^T \kappa G$
- Structure does not appear in SM $\beta_{\mathcal{K}}$ -function!
 - Origin: flavor-dependent gauge

interaction!

$$G \propto \tilde{g} \, \tilde{Q} = \tilde{g} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Part 1/6 - The New Quantum Effect $G^T \kappa G$

In SM, flavor-universal gauge couplings:

$$G_{SM} \propto \mathbb{1} \implies G_{SM}^T \kappa G_{SM} \propto \mathbb{1}^T \kappa \mathbb{1} = \kappa$$

$$\implies \beta_{\mathcal{K}} \supset G_{SM}^T \kappa G_{SM} \sim \alpha \kappa \quad !$$
(8)

$$\beta_{\mathcal{K}} = \underbrace{\alpha \, \mathcal{K} + P^T \, \mathcal{K} + \mathcal{K} \, P}_{\text{Standard Model + } U(1)_{L_{\mu} - L_{\tau}}} + \underbrace{\mathbf{G}^T \, \mathcal{K} \, \mathbf{G}}_{U(1)_{L_{\mu} - L_{\tau}}}$$
(9)

Part 2/6 - Generating Neutrino Masses via RGEs 1/3

Diagonalize $\beta_{\mathcal{K}}$ -function with leptonic mixing matrix U

$$\frac{\mathrm{d}\boldsymbol{\kappa}_{i}}{\mathrm{d}t} = \alpha \,\boldsymbol{\kappa}_{i} + 2 \left(U P U^{T} \right)_{ii} \boldsymbol{\kappa}_{i} + \sum_{k=1}^{3} \left[\left(U G U^{T} \right)_{ki} \right]^{2} \boldsymbol{\kappa}_{k} \tag{10}$$

$$\underbrace{\mathsf{Standard Model}}_{\mathsf{V}_{ki}} = U(1)_{L_{\mu}-L_{\tau}} \underbrace{\mathsf{V}_{\mu}_{\lambda}}_{\mathsf{U}_{\mu}-L_{\tau}} = U(1)_{L_{\mu}-L_{\tau}} \underbrace{\mathsf{U}_{\mu}_{\lambda}}_{\mathsf{U}_{\mu}-L_{\tau}} = U(1)_{L_{\mu}-L_{\tau}} \underbrace{\mathsf{U}_{\mu}_{\lambda}}_{\mathsf{U}_{\mu}-L_{\tau}} = U(1)_{L_{\mu}-L_{\tau}} \underbrace{\mathsf{U}_{\mu}_{\lambda}}_{\mathsf{U}_{\mu}-L_{\tau}} = U(1)_{L_{\mu}-L_{\tau}} \underbrace{\mathsf{U}_{\mu}}_{\mathsf{U}_{\mu}-L_{\tau}} = U(1)_{L_{\mu}-L_{\tau}} = U(1)$$

Can raise rank of mass matrix at 1-loop! In SM only at 2-loops!

Part 3/6 - Generating Neutrino Masses via RGEs 2/3

From just one non-zero mass at scale $\Lambda \sim 10^{14}$ GeV, generate two others via RGEs!

Running of the Mass Eigenvalues in the $U(1)_{L_{\mu}-L_{\tau}}$ Model

Figure 5 Running of the eigenvalues \mathcal{K}_i of \mathcal{K} due to the $G^T \mathcal{K} G$ term as a function of t; random, real leptonic mixing matrix $U(t_\Lambda)$ and $\tilde{g} = 0.5$; one non-zero eigenvalue at Λ

Most running happens

at the beginning

Part 4/6 - Generating Neutrino Masses via RGEs 3/3

	$m_{ u,3}$	$m_{ u,2}$	$m_{ u,1}$
Mass Values Before Running	$8\times 10^{-2}{\rm eV}$	$0\mathrm{eV}$	$0\mathrm{eV}$
Mass Values After Running	$\sim 8\times 10^{-2}{\rm eV}$	$\sim 8\times 10^{-3}{\rm eV}$	$\sim 8\times 10^{-5}{\rm eV}$
Mass Splittings	$\Delta m^2_{3\ell} \sim 6 imes 10^{-2}$	$^{-3}\mathrm{eV}^2$ Δm^2_{21} \sim	$\sim 6 imes 10^{-5} \mathrm{eV^2}$
Measured Mass Splittings	$\Delta m^2_{3\ell} \sim 7 imes 10^{-2}$	$^{-3}\mathrm{eV}^2$ Δm^2_{21} γ	$\sim 3 imes 10^{-5} \mathrm{eV}^2$

Table 1 Neutrino mass values before and after RGE running following fig. (5), and the resulting mass splittings; starting value inspired by cosmological constraint on mass sum, $\Sigma m_{\nu} < 0.111 \text{ eV}$ (eBoss, 2020) Lukas Treuer | Quantum Effects on Neutrino Parameters From a Flavored Gauge Boson | 2023/11/07 13

Part 5/6 - $G^T \kappa G$ From Vector Interactions

- $\quad \blacksquare \ \ \mathcal{L} \sim g_{ij} \left(\overline{l^i} \, \gamma^{\mu} \, l^j \right) V_{\mu} \text{ interaction only possibility for} \\ G^T \, \kappa \, G \text{ term at 1-loop!}$
- $\blacksquare \Longrightarrow$ Only present in flavor-nonuniversal gauge

theories & flavor gauge theories

Part 6/6 - Most General β_{κ} -Function

Most general, symmetry-allowed RGEs for any number of lepton generations at 1-loop:

$$U \left(\begin{array}{c} \frac{\mathrm{d}\kappa}{\mathrm{d}t} = \alpha\kappa + P^{T}\kappa + \kappa P + G^{T}\kappa G + \frac{1}{2} \left[G_{+}^{T}\kappa G_{-} + G_{-}^{T}\kappa G_{+} \right] \\ \frac{\mathrm{d}\kappa_{i}}{\mathrm{d}t} = \alpha\kappa_{i} + 2\tilde{P}_{ii}\kappa_{i} + \sum_{k=1}^{n} \operatorname{Re}\left\{ \left[\left(\tilde{G}_{ki}\right)^{2} \right] + \left[\tilde{G}_{+,ki}\tilde{G}_{-,ki} \right] \right\} \kappa_{k} \right\}$$
(11)

Enhanced running in non-abelian gauge extensions!

If no flow-reversing interactions: at any loop order!

General Calculation of β_{κ}

Part 1/1 - One-Loop $\beta_{\mathcal{K}}$ and General Contributions from Gauge Bosons

For any SM gauge extension

$$\beta_{\mathcal{K}} \supset \delta \kappa_{gf,1} \Big|_{V_{\mu} \text{ vertex}} = \frac{2}{16\pi^2} g_n^2 (3+\xi_n) \quad (T^T \kappa T)_{gf}, \qquad (13)$$

$$\beta_{\mathcal{K}} \supset \delta \kappa_{gf,1} \Big|_{V_{\mu}^{\pm} \text{ vertex}} = \frac{2}{16\pi^2} g_c^2 (3+\xi_c) \quad \frac{1}{2} \left(T_+^T \kappa T_- + T_-^T \kappa T_+\right)_{gf} \qquad (14)$$

2 Flavor-Nonuniversal Renormalization of κ and the New Quantum Effect

Summary and Outlook

4 Backup Slides

Summary - Standard Model vs. Flavor Gauge Theory

	Standard Model	$U(1)_{L_{\mu}-L_{\tau}}$ Gauge-Extension
Interaction matrices in flavor-space	$Q_{SM} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \mathbb{1}$	$\bar{Q} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \neq \mathbb{1}$
One-loop $\beta_{\mathcal{K}}$ structure	$\alpha\kappa+P^T\kappa+\kappaP$	$\begin{split} \boldsymbol{\alpha}\boldsymbol{\kappa} + \boldsymbol{P}^{T}\boldsymbol{\kappa} + \boldsymbol{\kappa}\boldsymbol{P} + \boldsymbol{G}^{T}\boldsymbol{\kappa}\boldsymbol{G},\\ \text{with}\boldsymbol{G} \propto \tilde{\boldsymbol{Q}} \end{split}$
One-loop $d\kappa_i/dt$ structure	$\propto \kappa_i$	$ig(\propto \kappa_i ig) + \sum\limits_{j=1}^3ig(\propto oldsymbol{\kappa}_j ig)$
Rank of κ throughout RGE evolution	constant	increases $\longrightarrow 3$
Mass splittings and mass hierarchy	Ad-hoc	Provides framework to explain and predict them

Enhanced running in non-abelian flavor gauge theories

 Verify appearance via general contributions

 "plug and play"

Outlook

- Wholistic non-abelian models
 - Symmetry breaking sequence
 - □ Charged lepton masses
 - □ Integrating out heavy gauge bosons
 - In-depth phenomenological analysis
 - Mass running and splittings
 - Fixed points of mixing angles and phases
 - □ Experimental prospects
 - \implies Keep an eye out for the paper!

Thank you for your attention!

1 Background

2 Flavor-Nonuniversal Renormalization of κ and the New Quantum Effect

I Summary and Outlook

4 Backup Slides

Part 1/18 - Aim of UV Models

Structure of neutrino mass matrices (Type-I Seesaw with right-handed neutrinos)

Figure 6 Feynman diagram for a Type-I Seesaw Mechanism

- Want: badly broken flavor gauge symmetry
 New effect
 - \Box No structure constraint \Longrightarrow arbitrary $\mathcal{K}(t_{\Lambda})$
 - □ Nice effects with fewer constraints!

Symmetry, additional fields, and realization of Spontaneous Symmetry Breaking (SSB)

Part 2/18 - The Six-Scalar $U(1)_{L_{\mu}-L_{\tau}}$ Model

$$U(1)_{L_{\mu}-L_{\tau}} \text{-symmetric phase } \kappa = \begin{pmatrix} \kappa_{11} & 0 & 0 \\ 0 & 0 & \kappa_{23} \\ 0 & \kappa_{23} & 0 \end{pmatrix}$$

Additional entries via SSB

Six-scalar $U(1)_{L_{\mu}-L_{\tau}}$ model: right-handed neutrino mass matrix from $-\mathcal{L} \supset \frac{1}{2} M_{ij} \overline{N_i^C} N_j + \frac{1}{2} \lambda_{ij} \overline{N_i^C} S_{ij} N_j$ $M_R = \begin{pmatrix} M_{ee} + \lambda_{ee} \langle S_{ee} \rangle & \lambda_{e\mu} \langle S_{e\mu} \rangle & \lambda_{e\tau} \langle S_{e\tau} \rangle \\ \lambda_{e\mu} \langle S_{e\mu} \rangle & \lambda_{\mu\mu} \langle S_{\mu\mu} \rangle & M_{\mu\tau} + \lambda_{\mu\tau} \langle S_{\mu\tau} \rangle \\ \lambda_{e\tau} \langle S_{e\tau} \rangle & M_{\mu\tau} + \lambda_{\mu\tau} \langle S_{\mu\tau} \rangle & \lambda_{\tau\tau} \langle S_{\tau\tau} \rangle \end{pmatrix}$

Lukas Treuer | Quantum Effects on Neutrino Parameters From a Flavored Gauge Boson | 2023/11/07

(15)

Part 3/18 - Non-Abelian Flavor Gauge Extensions

Flavor gauge groups $\Gamma \supset U(1)_{L_{\mu}-L_{\tau}}? \Longrightarrow SU(2)_{\mu\tau}, SU(3)_{\mu\tau}$

 $\blacksquare SU(3): N_i \text{ triplet representation, scalar anti-sextet; } -\mathcal{L} \supset \frac{1}{2} M_{ij} \overline{N_i^C} N_j + \frac{1}{2} \lambda \overline{N^C} S N$

$$M_{R} = \frac{\lambda}{\sqrt{2}} \begin{pmatrix} \sqrt{2} \langle S_{11} \rangle & \langle S_{12} \rangle & \langle S_{13} \rangle \\ \langle S_{12} \rangle & \sqrt{2} \langle S_{22} \rangle & \langle S_{23} \rangle \\ \langle S_{13} \rangle & \langle S_{23} \rangle & \sqrt{2} \langle S_{33} \rangle \end{pmatrix}$$
(16)

Flavor-charged gauge bosons: $G_{\pm} \implies$ stronger running, flavor-changing interactions

Anti-sextet breaks $SU(3)_{\mu\tau} \longrightarrow SU(2)_{\mu\tau} \longrightarrow \emptyset$, or $SU(3)_{\mu\tau} \longrightarrow \emptyset$

Part 4/18 - Degenerate Mass Generation

From two degenerate masses at scale Λ , generate one other, and splitting via RGEs!

Running of the Mass Eigenvalues in the $U(1)_{L_{\mu}-L_{\tau}}$ Model

Part 5/18 - Two Neutrino $U(1)_{L_{\mu}-L_{ au}}$ Model

Two neutrino $U(1)_{L_{\mu}-L_{\tau}}$ model:

Running of the Mixing Angle $\theta(t)$ in the Two Neutrino $U(1)_{L_{\mu}-L_{\tau}}$ Model

Part 6/18 - Weinberg-Operator and RGE Contributions

Explicit form of Weinberg-Operator: $\mathcal{L}_{\mathcal{K}} = \frac{1}{4} \kappa_{gf} \overline{l^C}_c^g \epsilon^{cd} \phi_d l_b^f \epsilon^{ba} \phi_a + h.c.$

Mass term:
$$\mathcal{L}_{\mathcal{K},\nu} = \frac{1}{4} \kappa_{gf} \overline{\nu^C}{}^g \nu^f \phi^0 \phi^0 + \text{h.c.} \xrightarrow{\text{EWSB}} \frac{\kappa_{gf} v_{\text{EW}}^2}{4} \frac{1}{2} \overline{\nu^C}{}^g v^f + \text{h.c.}$$

SM diagrams:

Figure 9 SM vertex correction contributions to κ RGEs at 1-loop (taken from Antusch, 2003)

Part 7/18 - RGE Contributions

Figure 10 SM Higgs doublet wave function renormalization contributions to κ RGEs at 1-loop (taken from Antusch, 2003)

Figure 11 SM lepton doublet wave function renormalization contributions to κ RGEs at 1-loop (taken from Antusch, 2003)

Part 8/18 - Explicit RGEs

RGEs for U(1)_{$L_{\mu}-L_{\tau}$} (SM: Babu et al., 1993; Casas et al., 2000; Antusch, 2003; $U(1)_{L_{u}-L_{u}}$: LT, 2023): $\beta_{\mathcal{K}}(t) = \frac{\mathrm{d}\kappa}{\frac{\mathrm{d}\iota}{\mathrm{d}t}} = \alpha\kappa + P^{T}\kappa + \kappa P + G^{T}\kappa G,$ (17) $16\pi^2 \ \alpha = \lambda - 3q_2^2 + 2\text{Tr}(3Y_{**}^{\dagger}Y_{**} + 3Y_{**}^{\dagger}Y_{*} + Y_{*}^{\dagger}Y_{*}).$ (18) $16\pi^2 P = -\frac{3}{2}Y_e^{\dagger}Y_e,$ (19) $\sqrt{16\pi^2} G = \sqrt{6}\tilde{g} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \left| \qquad G^T \kappa G = \frac{6\tilde{g}^2}{16\pi^2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \kappa_{22} & -\kappa_{23} \\ 0 & -\kappa_{33} & \kappa_{33} \end{pmatrix} \right|$ (20)

Part 9/18 - Charged Gauge Bosons

Charged generators:

$$T_{\pm} \equiv T_1 \pm i \, T_2 \,, \tag{21}$$

Charged gauge bosons:

$$X_{1}T_{1} + X_{2}T_{2} \stackrel{!}{=} \frac{1}{\sqrt{2}}X_{+}T_{+} + \frac{1}{\sqrt{2}}X_{-}T_{-} +, \qquad (22)$$
$$X_{+}X_{-} = \frac{1}{2}X_{1}^{2} + \frac{1}{2}X_{2}^{2} \qquad (23)$$

Part 10/18 - Flavor-Charged Gauge Boson Vertex Corrections

Flavor-charged gauge boson contributions

Figure 12 Structure of $X \pm$ to the Weinberg-Operator via vertex correction; the gray arrow denotes fermion flow

Part 11/18 - Wave Function Renormalization and SU(N)

SU(2) triplet representation in (μ, e, τ) basis:

$$T_{3}^{(3)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad T_{+}^{(3)} = \sqrt{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad T_{-}^{(3)} = \sqrt{2} \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
(24)

Resulting vertex contribution in (e, μ, τ) basis:

$$\delta \kappa_{,1} = \frac{2}{16\pi^2} \tilde{g}^2 \left(3 + \xi_X\right) \begin{pmatrix} 2\kappa_{23} & \kappa_{12} & \kappa_{13} \\ \kappa_{12} & \kappa_{22} & \kappa_{11} - \kappa_{23} \\ \kappa_{13} & \kappa_{11} - \kappa_{23} & \kappa_{33} \end{pmatrix}$$
(25)

Part 12/18 - Mass Generation in $SU(2)_{\mu au}$ 1/2

SU(2) $_{\mu\tau}$ with just one mass at Λ :

Running of the Mass Eigenvalues in the $SU(2)_{\mu\tau}$ Model

Part 13/18 - Mass Generation in $SU(2)_{\mu au}$ 2/2

SU(2)_{$\mu\tau$} with two degenerate masses at Λ :

Running of the Mass Eigenvalues in the $SU(2)_{\mu\tau}$ Model

Part 14/18 - Wave Function Renormalization, and SU(N)

General wave function renormalization

$$\delta Z_{l,gf,1} \Big|_{lV_{\mu}} = -\frac{2}{16\pi^2} g_n^2 \xi_n \ (\mathbf{T}^2)_{gf}, \qquad (26)$$

$$\delta Z_{l,gf,1} \Big|_{lV_{\mu}^{\pm}} = -\frac{2}{16\pi^2} g_n^2 \xi_n \frac{1}{2} \left(T_{+}^{\dagger} T_{+} + T_{-}^{\dagger} T_{-} \right)_{gf}$$
(27)

All SU(N) gauge bosons active (fundamental representation):

$$\sum_{A=1}^{N^{2}-1} \left[\left(T^{A} \right)^{T} \kappa T^{A} \right]_{jl} = \sum_{A=1}^{N^{2}-1} T^{A}_{ij} \kappa_{ik} T^{A}_{kl} = \kappa_{ik} \frac{1}{2} \left(\delta_{il} \delta_{jk} - \frac{1}{N} \delta_{ij} \delta_{kl} \right) = \frac{N-1}{2N} \kappa_{jl}$$
(28)

Part 15/18 - Neutrino Mass Matrices (Type-I Seesaw) (Heeck et al., 2011)

Type-I Seesaw Mechanism: Diagonalizing mass matrix
$$M_{\nu,tot} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_R \end{pmatrix}$$
 from
$$-\mathcal{L} \supset Y_{\nu,ij} \,\overline{l}^i \,\epsilon \,\phi^* \,N^j + \frac{1}{2} \,M_{R,ij} \,\overline{N^C}^i \,N^j + \text{h.c. gives: } M_\nu \approx -M_D \,M_R^{-1} \,M_D^T$$
If U(1)_{Lµ-L_{\alpha} exact: $M_R = \begin{pmatrix} M_{ee} & 0 & 0 \\ 0 & 0 & M_{\mu\tau} \\ 0 & M_{\mu\tau} & 0 \end{pmatrix}$, and with $M_D = \begin{pmatrix} m_{\nu_e} & 0 & 0 \\ 0 & m_{\nu_\mu} & 0 \\ 0 & 0 & m_{\nu_\tau} \end{pmatrix}$}

$$\longrightarrow M_{\nu} = -\begin{pmatrix} \frac{m_{\nu_e}^2}{M_{ee}} & 0 & 0\\ 0 & 0 & \frac{m_{\nu_{\mu}}m_{\nu_{\tau}}}{M_{\mu\tau}}\\ 0 & \frac{m_{\nu_{\mu}}m_{\nu_{\tau}}}{M_{\mu\tau}} & 0 \end{pmatrix}$$

Part 16/18 - Dark Matter from the Proposed Models

Dark matter in $U(1)_{L_{\mu}-L_{\tau}}$ six-scalar model? N_i or S_{ij} possible

 S_{ij} :

 $\Box \text{ vevs } \langle S_{ij} \rangle = \sqrt{\frac{\mu_{ij}^2}{\lambda_{ij}^S}}$

 \Box Massive components with masses μ_{ij}

$$\Box \ N_i ext{ masses} \sim \lambda_{ij} \left< S_{ij} \right> = \lambda_{ij} \sqrt{rac{\mu_{ij}^2}{\lambda_{ij}^S}}$$

 $\Longrightarrow S_{ij}$ viable dark matter candidates if $\lambda_{ij}\gtrsim \sqrt{\lambda_{ij}^S}$

Could use massive S_{ij} remnants as dark matter, N_i for leptogenesis (CP-violating decay to ϕ and l^f)

Part 17/18 - Gauge-Independence 1/2

Gauge-invariance via Nambu-Goldstone bosons (one generation), otherwise SSB-generated Weinberg-Operator in unitary gauge!

$$\mathcal{L}_{\mathcal{K}} \sim \mathcal{K}\left(l \cdot \phi\right) \left(l \cdot \phi\right) \ e^{i \left(-2q_{l}\right) \chi / M_{Z'}} + \text{h.c.}$$
⁽²⁹⁾

$$\mathcal{L}_{Z'+\,\mathrm{GF}} = -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} M_{Z'}^2 \left(Z'_{\mu} + \frac{1}{M_{Z'}} \partial_{\mu} \chi \right)^2 - \frac{1}{2\xi_{Z'}} \left(\partial_{\mu} Z'^{\mu} - \xi_{Z'} \,\tilde{g} \,\chi \right)^2 \tag{30}$$

$$\beta_{\mathcal{K}} \Big|_{Z',\xi_{Z'}} = \underbrace{2 \cdot \frac{1}{16\pi^2} \xi_{Z'} \,\tilde{g}^2 \,q_l^2 \,\kappa}_{\text{from } \delta Z_l} + \underbrace{\frac{1}{16\pi^2} \, 2 \,\xi_{Z'} \,\tilde{g}^2 \,q_l^2 \,\kappa}_{\text{from } \delta \kappa} = 4 \, \frac{1}{16\pi^2} \,\xi_{Z'} \,\tilde{g}^2 \,q_l^2 \,\kappa \tag{31}$$

Part 18/18 - Gauge-Independence 2/2

Tadpole diagram from quadratic term of exponential (dim. 7):

Suppression scale cancels with tadpole mass $\delta \kappa_{\text{tadpole},1} = -\frac{1}{16\pi^2} \xi_{Z'} \tilde{g}^2 (-2q_l)^2 \kappa$

Gauge-dependence cancels: