Probing chirality structure in lepton-flavor-violating Higgs decay $h \rightarrow \tau \mu$ at the LHC

L. Zamakhsyari Kanazawa University

KEK, Phenomenology Meeting 2023 7.11.2023

M. Aoki, S. Kanemura, M. Takeuchi, and L. Z. Phys. Rev. D 107 (2023) 5

Introduction and background

Motivation

After $m_h = 125$ GeV in 2012 Standard model (SM) is not finished yet...

- 1. Flavor structure.
- 2. Higgs sector.
- 3. BSM phenomena : neutrino mass, DM, Baryon asymmetry.
- 4. Gravity unification

Focus : flavor structure especially the lepton-flavor violation (LFV)

 $(h \rightarrow l_i l_j, l_i \rightarrow l_j \gamma, \text{etc.})$

testable at previous, current and future experiments.

(Charged) LFV interaction

In SM : Higgs only couple to same flavour leptons. $-\mathscr{L}_Y^{\text{SM}} \supset \overline{l_L} \frac{Y_1}{\sqrt{2}} l_R h + h.c., \quad m_l = \text{diag}(m_e, n)$

$$-\mathcal{L}_Y \supset \overline{l_L} \left(\frac{Y_1}{\sqrt{2}} + \frac{Y_2}{\sqrt{2}} \right) l_R h + h \cdot c \, . \, ,$$

Example in 2HDM (type III):

$$-\mathcal{L}_Y^{\text{2HDM}} \supset \overline{l_L} \left(\frac{m_l}{v} \sin(\beta - \alpha) + \frac{\rho^l}{\sqrt{2}} \cos(\beta - \alpha) \right) l_R h + h \cdot c \,.$$

У

$$y = \begin{pmatrix} y_{ee} & y_{e\mu} & y_{e\tau} \\ y_{\mu e} & y_{\mu\mu} & y_{\mu\tau} \\ y_{\tau e} & y_{\tau\mu} & y_{\tau\tau} \end{pmatrix}$$

$$(m_{\mu}, m_{\tau}) = \frac{v}{\sqrt{2}} V_L^{\dagger} Y_1 V_R$$

In BSM : an extra Yukawa matrix -> can not be diagonalized simultaneously -> Source of LFV.

$$\begin{split} -\mathscr{L}_{Y} \supset \overline{l}_{i}(y_{ij}P_{R} + y_{ji}^{*}P_{L})hl_{j} \\ &= \overline{l}_{i}\tilde{y}_{ij}hl_{j} \end{split}$$

LFV Higgs decay (hLFV)

- hLFV only processes $h \rightarrow l_i l_i$ $(h \rightarrow l_i^+ l_i^- + h -$
 - 1. Extensive experimental records on $h \rightarrow l_i l_i$
 - 2. Upgrade on future HL-LHC up to L=3000 f [CERN Yellow Rep. (2015) 5]: more data available to be analyzed.
- Which $h \rightarrow l_i l_i$?
 - 1. \bar{y}_{ii} on $h \rightarrow l_i l_i$ is strongest among all LFV, except μe . $\bar{y}_{\mu e}: \sim 10^{-4} (h \rightarrow \mu e) << \sim 10^{-6} (\mu \rightarrow e\gamma). h \rightarrow \mu e \text{ is not}$ considered.
- 2. $h \rightarrow \tau e$ has more backgrounds than $h \rightarrow \tau \mu$. • $h \rightarrow \tau \mu$ only.

$$\rightarrow l_i^- l_j^+$$
).
, at the LHC fb⁻¹.

Process	BR (ATLA	BR(CMS)			
$h ightarrow \mu e$	6.2×10^{-5}	[1]	4.4×10^{-5}	[2	
$h \to \tau e$	$2.0 imes 10^{-3}$	[3]	2.2×10^{-3}	[2	
$h ightarrow au \mu$	$1.8 imes 10^{-3}$	[3]	1.5×10^{-3}	[2	

[1] ATLAS, Phys. Lett. B 801 (2020) [2] CMS, Phys.Rev.D 108 (2023) 7 [3] ATLAS, JHEP 07, 166 (2023) [4] CMS, Phys.Rev.D 104 (2021) 3

 $BR \sim \bar{y}_{ij}^2, \ \bar{y}_{ij} \equiv \sqrt{|y_{ij}|^2 + |y_{ji}|^2}$

$$\bar{y}_{\tau\mu} = \sqrt{|y_{\tau\mu}|^2 + |y_{\mu\tau}|^2} < 1.2 \times 10^{-3} \ (h \to \tau\mu)$$

Chirality structure

- Unpolarized. no chirality preference : $h \rightarrow \tau \mu$. Experiment/simulation to derive upper limit (UL) $BR(h \rightarrow \tau \mu) \propto |y_{\tau\mu}|^2 + |y_{\mu\tau}|^2 < \text{some number.}$ -> circle area on the $|y_{\mu\tau}| - |y_{\tau\mu}|$ plane.
- Polarized case : $h \to \tau_L \mu_R, h \to \tau_R \mu_L$. UL: $BR(h \to \tau_L \mu_R) \propto |y_{\tau\mu}|^2$ < number 1 $BR(h \to \tau_R \mu_L) \propto |y_{\mu\tau}|^2$ < number 2
- The UL contour will be contribution from both that will modify the shape of the contour.

• Theoretically some BSM models induce a natural chiral structure on hLFV. [C. W. Chiang, et. al., JHEP 11 (2015) 057] (axion-variant) 2HDM + singlet scalar σ with PQ charge

$$\tau_{R} \text{ PQ charge} = -1.$$

$$\mathscr{L}_{Y} \supset \sum_{i,a} \bar{l}_{Li}(Y_{1})_{ia} \Phi_{1} l_{Ra} + \bar{l}_{Li}(Y_{2})_{i3} \Phi_{2} \tau_{R} + h.c., \quad i = 1, 2, 3, \quad a = 1, 2$$

$$\mathscr{L}_{Y} \supset -\sum_{l=e,\mu,\tau} \xi_{l} \frac{m_{l}}{v} \overline{ll} - a \sum_{l,l'=e,\mu,\tau} (H_{l})_{ll'} \frac{m_{l}}{v} h \overline{l}_{L}$$

 H_l is the Hermitian, non diagonal flavor matrix. $h \to \tau \mu \to h \to \tau_L \mu_R$: $y = (H_l)_{\tau \mu} m_{\tau} / v$, $h \to \tau \mu \to h \to \tau_L \mu_R$

$$(0, -1, +1)$$
 for (Φ_1, Φ_2, σ) .

 $l'_R + h \cdot c$.

$$h \rightarrow \tau_R \mu_L$$
 : $y = (H_l)^*_{\mu\tau} m_{\mu} / v$

Objectives

- Is the chirality structure distinguishable?

• If $h \to \tau \mu$ is polarized, what is the effects on the coupling contour in $|y_{\mu\tau}| - |y_{\tau\mu}|$ plane.

Simulations and Results

Chirality structure : tau polarization

- In principle the τ polarization (τ_R, τ_L) information is carried by its decay products. • $pp \rightarrow h \rightarrow \tau \mu \rightarrow \tau_h \nu_{\tau} \mu$, τ_h is visible hadronic tau decay products : π, ρ, a_1 (made up
- $pp \rightarrow h \rightarrow \tau \mu \rightarrow \tau_h \nu_\tau \mu$, τ_h is visible had more than 50% of tau BR).
- Distribution of energy fraction $x_i = E_i/E_i$
- Simulation is done in Madgraph by fixin
- At parton level and reconstructed level.

$$E_{\tau'}$$
 $i = \pi, \rho, a_1$.
Ing $(y_{\mu\tau}, y_{\tau\mu}) = (1,0); (0,1)$ for τ_R, τ_L respectively.

Tau polarization : Parton level

- On ρ , a_1 the τ_R , τ_L structure are sensitive on high x but not too sensitive in low x.

• Clear separation between τ_R, τ_L : hard on τ_R and soft on τ_L . Very clear in x_{π} . The distributions agree with [B. K. Bullock, et.al, Nucl. Phys. B 395, 499 (1993), K. Hagiwara, et.al., Phys. Lett. B 235, 198 (1990)]

Tau polarization : Reconstructed level

- Reconstructed level done by simulating the detector using Delphes.
- The polarization affects the acceptance of number of events.

• Significant reduction at the low x_i due to jet energy threshold. Original shapes still preserved.

Signal and background simulation at the LHC

- Signal : $pp \rightarrow h (ggf), h \rightarrow \tau \mu \rightarrow \tau_h \nu_\tau \mu$.
- Chirality structure : $(y_{\mu\tau}, y_{\tau\mu}) = (0, 1)$,(1,0) for

 $h \to \tau_L \mu_R, h \to \tau_R \mu_L.$

• Background : $pp \rightarrow Z, Z \rightarrow \tau_h \tau_\mu$. τ_μ are taus decay to muons.

Collinear mass analysis

- Based on $m_{\tau\tau}$ reconstruction.
- Although $\vec{p}(\tau_{1 \text{ invis}}) \equiv c_1 \vec{p}(\tau_{1 \text{ vis}})$, \vec{p}_T is not • $\vec{p}_T = \vec{p}_T(\tau_{1 \text{ invis}}) + \vec{p}_T(\tau_{2 \text{ invis}}) \equiv c_1 \vec{p}_T(\tau_{1 \text{ vis}}) + c_2 \vec{p}_T(\tau_{2 \text{ vis}}), \quad c_i > 0$ completely parallel with \vec{p}_{T,τ_1} : [M. Schlaffer, et. al., Eur. Phys.J.C 74 (2014) 10] $\vec{p}_T = c_1 \vec{p}_{T,\tau_1} + c_\perp \hat{n}_{T,\perp'}$ • Solving $c_{1,2}$: $m_{\text{col}2}^2 = (p_{\tau_{1\text{vis}}} + p_{\nu_{1}} + p_{\tau_{2\text{vis}}} + p_{\nu_{2}})^2$ • Solving for $c_1: m_{\text{coll}}^2 = (p_{\tau_{1\text{vis}}} + p_{\nu_1} + p_{\mu})^2$. • For $m_{\tau u}$, $\mu \equiv \tau_{2 \text{ vis}}$. [R. Harnik, et.al., JHEP 03 (2013) 026]

• Construction with 1 $\tau_{\rm vis}$.

14

- m_{col1} has a sharper peak and clear separation between S and B than m_{col2} .
- Better signal region using $|m_{colli} m_h| < \Delta m$, with $\Delta m = 25$ and 5 GeV.

The distribution of m_{col2} and m_{col1}

Cut flows for signal and background Background Signal (S) **(B)** $h \rightarrow \tau \mu_{(BR=1 \%)}$ $Z \to \tau_h \tau_\mu$ au_R au_L 258 pb σ at 13 TeV LHC 355 fbfor $\mathcal{L} = 36.1 \, \text{fb}^{-1}$ 9.31×10^{6} 12795 baseline cuts 19791742130147 $x_i = 1/(c_i + 1)$ $x_1 > 0$ and $x_2 > 0$ 102536 16721480 $m_{ m coll2}$ $|m_{ m coll2} - m_h| < 25 { m ~GeV}$ 717 643 21473 1765160868602 $c_1 > 0$ $m_{ m coll1}$ $|m_{\rm coll1} - m_h| < 25 \,\,{\rm GeV}|\,1626$ 1493 4023

The number of events are normalized to ATLAS 36.1 fb⁻¹. [Phys. Lett. B 800, 135069 (2020)]

S/B

No systematic error : better S/
 B.

• S/B is better for m_{coll} . $\Delta m = 5$ GeV, S/B=2.8.

			Signal				
			(S)				
			$h \to \tau \mu_{(BR=1)}$				
			$ au_R$	$ au_0$	$ au_L$		
		σ at 13 TeV LHC	$355~{ m fb}$				
		for $\mathcal{L} = 36.1 \mathrm{fb}^{-1}$	12795				
		baseline cuts	1979	1861	1742		
$x_i = 1/($	$(c_i + 1)$	$x_1 > 0 \text{ and } x_2 > 0$	1672	1576	1480		
	$m_{\rm coll2}$	$ m_{ m coll2} - m_h < 25 { m ~GeV}$	717	680	643		
	m	$c_1 > 0$	1765	1682	1608		
	$m_{\rm coll1}$	$ m_{ m coll1} - m_h < 25 { m ~GeV}$	1626	1560	1493		

The number of events are normalized to ATLAS 36.1 fb⁻¹. [Phys. Lett. B 800, 135069 (2020)]

%)

Chirality structure

- Asymmetry number of signals, $S(\tau_R) > S(\tau_L).$
- $\pm 6\%$ difference with τ_0 for m_{coll} and $m_{\rm col2}$.
- $\Delta m = 5$ GeV, polarization sensitivity for m_{col1} reduced to 3.3% while for $m_{\rm col2}$ stays at 6%.

Sensitivity to the chirality structure

 $\Delta m = 25 \text{ GeV}$

	$S^{95\%}$	BI	$R^{95\%}$ (%)	$ar{y}^{95\%}_{ au\mu}$			
		$ au_R$	$ au_0$	$ au_L$	$ au_R$	$ au_0$	$ au_L$	
$m_{ m col2}$	342	0.48	0.50	0.53	0.0020	0.00205	0.0021	
$m_{ m col1}$	148	0.091	0.095	0.099	0.00087	0.00089	0.00090	

1.
$$S^{95\%} = 1.65\sqrt{B}$$
 is the frequentist one-
sided 95% CL signal upper bound.
2. $BR^{95\%} = (S^{95\%}/S)BR(h \to \tau\mu)$, with
 $BR(h \to \tau\mu) = 1 \%$.
3. $BR = 0.12\% \times \frac{(|y_{\mu\tau}|^2 + |y_{\tau\mu}|^2)}{10^{-6}}$ for τ_L ,
4. Any distribution
 $f(x; y_{\mu\tau}, y_{\tau\mu}) = |y_{\mu\tau}| f_R(x) + |y_{\tau\mu}| f_L(x)$
 $(y_{\mu\tau}, y_{\tau\mu})$:
 $\tau_L \sim (0,1), \ \tau_R \sim (1,0), \ \tau_0 \sim (1/2,1/2)$

18

Modification on $|y_{\mu\tau}| - |y_{\tau\mu}|$ **contour**

- Modification on the sensitivity contour from circle (unpolarized) to ellipse (polarized)
- *m*_{col2} **polarized** -> **unpolarized** modify the contour up to $\pm 2 - 3\%$ on $y_{\mu\tau} - y_{\tau\mu}$ (BR up to $\pm 4 - 6\%$).
- The sensitivity is improved 5 times from $m_{\rm col2}$ to $m_{\rm col1}$.

Comparison to ATLAS 36.1 fb⁻¹expected result

• m_{col2} appeared to be close to the ATLAS expected result (dashed-pink). If systematic error analysis is included, the sensitivity by m_{col2} analysis will be worse. However, m_{col1} has a better sensitivity should persist.

Expected result ATLAS $BR(h \rightarrow \tau \mu) = 0.57\% \text{ (non-VBF)}$ $\bar{y}_{\tau\mu} = 0.0022$

Sensitivity for the chirality structure

- Probing the chirality structure given a finite number of signals.
- Scenarios BR($h \rightarrow \tau \mu$)=0.12% or

$$\begin{split} \bar{y}_{\tau\mu} &= 10^{-3} : \\ (\hat{y}_{\mu\tau}, \hat{y}_{\tau\mu}) &= \begin{cases} (10^{-3}, 0), & \tau_R \\ (0, 10^{-3}), & \tau_L \\ (7.1 \times 10^{-4}, 7.1 \times 10^{-4}), & \text{unpolarized} \end{cases} \end{split}$$

• x_1 distribution of m_{col1} . Two signal regions (SR) : SR1 ($x_1 < 0.6$) and SR2 ($x_1 \ge 0.6$).

$\Delta m_{ m col1}^{ m th}$	\mathbf{SR}	$N_{i,BR=0.12\%}$		N_i/N		N_i/N		$N_{i,\text{obs}}$ for each scenario		ach scenario	
		$ au_R$	$ au_L$	$Z \to \tau \tau$	$ au_R$	$ au_L$	$ au_R$	$ au_0$	$ au_L$	$N_{i,\text{obs}} = S_i + B_i$	
	SR_1	50.6	66.1	3384	0.26	0.37	3436	3443	3451		
$25~{ m GeV}$	SR_2	144.5	113.1	2331	0.74	0.63	4807	4791	4776		
	total	195.1	179.2	8046	1	1	8243	8234	8227		

• Expected contour region deviates from the observed events in each scenario : χ^2 two dimensional parameter fit.

$$\chi^{2} = \left(\frac{N_{1,\exp} - N_{1,\text{obs}}}{\sqrt{N_{1,\exp}}}\right)^{2} + \left(\frac{N_{2,\exp} - N_{2,\text{obs}}}{\sqrt{N_{2,\exp}}}\right)^{2} \implies \chi^{2} = \left(\frac{r\Delta N_{R} + l\Delta N_{L}}{\sqrt{N_{1,\text{obs}}}}\right)^{2} + \left(\frac{(1 - r)\Delta N_{R} + (1 - l)\Delta N_{L}}{\sqrt{N_{2,\text{obs}}}}\right)^{2} \\ \Delta N_{R} = N_{R} \left(\frac{L}{36.1 \text{ fb}^{-1}}\right) \frac{(y_{\mu\tau} - \hat{y}_{\mu\tau})^{2}}{10^{-6}}, \ \Delta N_{L} = N_{L} \left(\frac{L}{36.1 \text{ fb}^{-1}}\right) \frac{(y_{\tau\mu} - \hat{y}_{\tau\mu})^{2}}{10^{-6}} \text{ are the deviations from the value } N_{R} \text{ and } N_{L}. \qquad r, l = (N_{1}/N)_{R,L}.$$

 σ at 3000 fb⁻¹.

• τ_R , τ_L can be distinguished at 2.3 $\sigma(4.4\sigma)$ for 1000(3000) fb⁻¹ and τ_0 can be distinguished at 1.9

• $\Delta m = 5$ GeV. τ_R , $\tau_0(\tau_L)$ can already be distinguished at 2.1 $\sigma(4.8\sigma)$ for 139 fb⁻¹.

Conclusion

1. Polarization affects the acceptance of number of events.

- 2. The collinear mass m_{coll} gives a better S/B ratio for signal-background analysis on hLFV $h \rightarrow \tau \mu$ than m_{col2} .
- GeV.
- 4. Chirality structure can be probed at the near future HL-LHC :
 - τ_0 at 3000 fb⁻¹ with 1.9 σ .
 - $\tau_0(\tau_I)$ can be distinguished at 2.1 $\sigma(4.8\sigma)$.

3. The sensitivity on the $\bar{y}_{\tau\mu}$ is modified up to $\pm 2 - 3\%$ due to the polarization for $\Delta m = 25$

a. For $\Delta m = 25$ GeV, τ_R , τ_L can be distinguished at least at 1000 fb⁻¹ with confidence 2.3 σ and

b. For $\Delta m = 5$ GeV, the chirality structure will become sensitive at 139 fb⁻¹. Assuming τ_R ,

Thank You ありがとうございます

Theory : Tau chirality

• The tau chirality : spin polarization (helicity) of its decay product. Example : $\tau^- \rightarrow \pi^- \nu_{\tau}$. At the τ^- rest frame

$$\cos \theta_{\pi} = \hat{n}_{\tau} \cdot \hat{p}_{\pi'} \quad \frac{1}{\Gamma_{\pi}} \frac{d\Gamma_{\pi}}{d\cos \theta_{\pi}} = \frac{1}{2} (1 + \kappa_{\pi} P \cos \theta_{\pi})$$

The distribution can be written in term of energy

fraction $x_{\pi} = E_{\pi}/E_{\tau}$ so that $\frac{1}{\Gamma_{\pi}} \frac{d\Gamma_{i}}{dx_{\pi}} = 1 + \kappa_{\pi}P(2x_{\pi}-1),$

Tau decay products distribution

- The dominant hadronic tau (τ_h) decay products : π, ρ, a_1 (up to 50% of tau BR).
- Clear separation between $\tau_R, \tau_L : \tau_R$ dominate high x_i , and τ_L is vice versa.
- Modification on the x_i distributions of ρ , a_1 come from their κ_i . (All labels should be able to be read)

[Bullock, et. al., Nucl. Phys. B, 395:499, (1993)].

$$\bar{y}_{\tau\mu} = \sqrt{|y_{\tau\mu}|^2 + |y_{\mu\tau}|^2} < 1.2 \times 10^{-3}$$

Chirality structure (problem*)

• Experimental: effect of chirality structure on hLFV has not been observed.

At the upper limit contour :

 $BR(h \to \tau \mu) \sim |y_{\tau \mu}|^2 + |y_{\mu \tau}|^2 < \text{some number.}$ $->(y_{\mu\tau}, y_{\tau\mu})$

• No spin correlation effects:

 $BR(h \to \tau_L \mu_R) \sim |y_{\tau\mu}|^2,$ ->(0,b) $BR(h \rightarrow \tau_R \mu_L) \sim |y_{\mu\tau}|^2$, -> (a,0)

- Unpolarized (no chiral structure) : a=b or $\bar{y}_{\tau \mu}$ is a constant . Circle in $y_{\mu\tau} - y_{\tau\mu}$ plane.
- Polarized case, $a \neq b$ and $\bar{y}_{\tau\mu}$ is not a constant.

Theoretically : models with a chiral hLFV has interesting phenomenology. Example in [C. W. Chiang, et. al., JHEP 11 (2015) 057] : 2HDM + singlet scalar σ . $U(1)_{\rm PO}$ charge : (0, -1, +1) for Φ_1, Φ_2, σ . σ gets a vev at high energy scale, so in low energy, the theory is 2HDM. τ_R also has a -1 PQ charge.

 $\mathscr{L}_{Y} \supset \overline{l}_{Li}(Y_{1})_{ia} \Phi_{1} l_{Ra} + \overline{l}_{Li}(Y_{2})_{i3} \tau_{R} + h.c., \quad i = 1, 2, 3, \quad a = 1, 2$ Rotate to the eigen mass basis, both for the Higgs doublets and the leptons :

$$\mathscr{L}_{Y} \supset -\sum_{l} \xi_{l} \frac{m_{f}}{v} \overline{ll} - a \sum_{l,l'=e,\mu,\tau} (H_{l})_{ll'} \frac{m_{l}}{v} h \overline{l}_{L} l_{R}' + h \cdot c \cdot dt + h \cdot dt +$$

$$H_e = V_L \begin{pmatrix} 0 & 0 \\ 1 \end{pmatrix} V_L^{\dagger} - \begin{pmatrix} 0 & 0 \\ 1 \end{pmatrix}, \quad a = (\tan \beta - \cot \beta) \cos(\beta - \alpha),$$

$$\xi_l = \begin{cases} \sin(\beta - \alpha) + \cot \beta \cos(\beta - \alpha), \text{ for } (1 = \tau) \\ \sin(\beta - \alpha) - \tan \beta \cos(\beta - \alpha) \text{ for } (1 \neq \tau) \end{cases}$$

Result: In $h \to \tau^- \mu^+$, the τ is left handed for some benchmark parameters.

30

• The ATLAS number is recovered for m_{col2} for $x_{1,2} > 0$ with difference in S and B average to 30% and 7% respectively.

Cuts

- Baseline cuts.
 - visible decay product of tau jet, i.e. π, ρ or a_1
- 2. To reduce background from misidentified τ , we need $|\Delta \eta(\mu, \tau_{\text{vis}})| < 2.0$.
- 3. To avoid I_T coming from other source, we need $\sum \cos \Delta \phi(i, I_T) > -0.35$.
- and one missing particle.

1. Exactly 1 isolated μ and 1τ jet (opposite sign) with $p_{T,\mu} = 27.3$ GeV and $p_{T,\tau_{vis}} = 25$ GeV. τ_{vis} denotes the

 $i=\mu,\tau_{\rm vis}$

• Further signal-background separation is done by using collinear mass m_{col} analysis : two missing particles

Collinear mass m_{col2}

- Commonly used for reconstructing $m_{\tau\tau}$ of $h \to \tau\tau$. We call this m_{col2} .
- momentum.

 $\vec{p}_{\tau_{\text{vis}}} = x\vec{p}_{\tau}, \quad \vec{p}_{\tau_{\text{invis}}} = (1-x)\vec{p}_{\tau}, \quad 0 \le x \le 1.$ • The \vec{p}_T accounts for the two neutrinos from the $h \to \tau \tau$: $\vec{p}_T = c_1 \vec{p}_{T,\tau_{1 \text{vis}}} + c_2 \vec{p}_{T,\tau_{2 \text{vis}}}, \quad c_i = (1 - x_i)/x_i > 0.$ • Solving for c_1, c_2 , we can reconstruct the $m_{\tau\tau}$ mass as $m_{\text{col2}}^2 = (p_{\tau_{1\text{vis}}} + p_{\tau_{2\text{vis}}} + p_{\nu_{1\text{reco}}} + p_{\nu_{2\text{reco}}})^2$, where $\vec{p}_{\nu_{i\text{reco}}} = c_i \vec{p}_{\tau_{i\text{vis}}}$. • For the $m_{\tau u}$, we assume the μ to be the visible product of τ_2 , i.e. $\tau_{2,vis}$. [short sentences only]

• At high energy/high- p_T condition, the decay products of tau (visible or not) will be collinear to the tau

Collinear mass m_{coll}

- A better natural way of reconstructing the $m_{\tau\mu}$ is by assuming one missing particle. $\vec{p}_T \propto c_1 \vec{p}_{T,\tau_{1\text{vis}}}.$
- Solving for c_1 from $\cos\theta = |\vec{p}_T \cdot \vec{p}_{T,\tau_{1}vis} / |\vec{p}_T | |\vec{p}_{T,\tau_{1}vis} |$, we can reconstruct the $m_{\tau\mu}$ mass as $m_{\text{coll}}^2 = (p_{\tau_{1\text{vis}}} + p_{\nu_{1\text{reco}}} + p_{\mu})^2$, where $\vec{p}_{\nu_{1\text{reco}}} = c_1 \vec{p}_{\tau_{1\text{vis}}}$.

• However due to the detector and measurement effects, the \vec{p}_T is not completely parallel with $\vec{p}_{T,\tau_{1 ext{vis}}}$. $\vec{p}_T = c_1 \vec{p}_{T,\tau_{1 \text{vis}}} + c_\perp \hat{n}_{T,\perp}$, where $\hat{n}_{T,\perp}$ is the unit vector orthogonal to $\vec{p}_{T,\tau_{1 \text{vis}}}$.

From 95%CL BR we can get $\bar{y}_{\tau\mu,L}$, $\bar{y}_{\tau\mu,R}$ at 95% CL using:

$$BR_{R,L}^{95\%} = 0.12\% \times \frac{\bar{y}_{\tau\mu R,L}^2}{10^{-6}}$$

$$f(x) = af(x)_R + (1 - a)f(x)_L$$

- For $\Delta m = 25$ GeV, the sensitivity is improved 5 times from m_{col2} to m_{col1} .
- Coincidentally m_{col2} sensitivity is close to the non-VBF $\tau_h \mu$ mode ATLAS with BR($h \rightarrow \tau \mu$) = 0.57 % or $\bar{y}_{\tau\mu} = 0.0022$ (pink dashed line). [1]
- If we include the systematic errors, our result may be invalid, however the m_{coll} has a better sensitivity should persist. [this is the last one]
- The chirality effect on the sensitivity $\bar{y}_{\tau \mu}$ modifies the contour from circle into ellipse.
- It modifies $\pm 4 6\%$ on BR or $\pm 2 3\%$ on the unpolarized $(y_{\mu\tau}, y_{\tau\mu})$ plane. We expect similar modification on the ATLAS result also.

LFV experiments status

Process	BR present bound	Future sensitivity
$\mu ightarrow e \gamma$	3.1×10^{-13}	$6 imes 10^{-14}$ [2]
$\tau \to e \gamma$	3.3×10^{-8} [3]	$\sim 10^{-9}$ [4]
$\tau \to \mu \gamma$	4.4×10^{-8} [3]	$\sim 10^{-9}$ [4, 5]
$\mu \to eee$	1.0×10^{-12} [6]	$\sim 10^{-16}$ [7]
$\tau \to eee$	2.7×10^{-8} [8]	$\sim 4 \times 10^{-10}$ [5]
$ au o \mu \mu \mu$	2.1×10^{-8} [8]	$\sim 5 \times 10^{-10}$ [5]
$\tau^- \to e^- \mu^+ \mu^-$	2.7×10^{-8} [8]	$\sim 5 \times 10^{-10}$ [5]
$\tau^- \to \mu^- e^+ e^-$	1.8×10^{-8} [8]	$\sim 5 \times 10^{-10}$ [5]
$\tau^- ightarrow e^+ \mu^- \mu^+$	1.7×10^{-8} [8]	$\sim 4 \times 10^{-10}$ [5]
$\tau^- \to \mu^+ e^- e^+$	1.5×10^{-8} [8]	$\sim 3 imes 10^{-10}$ [5]

[1] MEG-II, arXiv: 2310.12614

- [2] A. M. Baldini, et.al. (MEG proposal), arXiv:1301.7225
- [3] BaBar, Phys. Rev. Lett. 104, 021802 (2010)
- [4] BaBar, Belle, Eur. Phys. J. C 74, 3026 (2014)
- [5] Belle-II, PTEP 2019, 123C01 (2019), Err: PTEP 2020, 029201 (2020)
- [6] SINDRUM, Nucl. Phys. B 299, 1 (1988)
- [7] A. Blondel et al. (Mu3e proposal), arXiv:1301.6113
- [8] Belle, Phys. Lett. B 687, 139 (2010)

The LFV interaction $h \rightarrow l_i l_j$ leads to important (low-energy) LFV processes that has been experimentally on.

Cut flows for collinear mass analysis L=36.1 fb^{-1}

Signal (S) Background (B)

				0		9	• •		
				$h \rightarrow \tau \mu_{(BR=1 \%)}$				BR	95%
			$ au_R$		$ au_L$	$Z o au_h au_\mu$	S ^{95%}	$ au_R$	$ au_L$
		σ at 13 TeV LHC		355	5 fb	$258 \mathrm{~pb}$			
		for $\mathcal{L} = 36.1 \mathrm{fb}^{-1}$		12	795	$9.31 imes 10^6$			
		baseline cuts	1979)	1742	130147			
$x_i = 1/(c_i)$	(+1)	$x_1 > 0 \text{ and } x_2 > 0$	1672	2	1480	102536	747	0.45	0.50
l · · l	$m_{ m coll2}$	$ m_{\rm coll2} - m_h < 25 {\rm ~GeV}$	717		643	21473	342	0.48	0.53
		$ m_{ m coll2} - m_h < 10 { m GeV}$	-344		304	7639	204	0.59	0.67
		$ m_{\rm coll2}-m_h <5~{\rm GeV}$	177		157	3776	143	0.81	0.91
m_{co}		$c_1 > 0$	1765	5	1608	68602	610	0.34	0.38
	$\overline{m_{ m coll1}}$	$ m_{\rm coll1}-m_h <25~{\rm GeV}$	1626	3	1493	4023	148	0.091	0.099
		$ m_{\rm coll1} - m_h < 10 \ {\rm GeV}$	1080)	1008	639	58.9	0.055	0.059
		$ m_{\rm coll1} - m_h < 5 \ {\rm GeV}$	617	>	577	216	34.2	0.056	0.059
							_		

Notes:

- 1. The number of events are normalized to ATLAS 36.1 fb^{-1} . [Phys. Lett. B 800, 135069 (2020)]
- 2. $S^{95\%} = 1.65\sqrt{B}$ is the one-sided 95% CL upper bound on the signals.
- 3. $BR^{95\%} = (S^{95\%}/S)BR(h \to \tau \mu)$, with $BR(h \to \tau \mu) = 1\%$.

- S/B
- $\Delta m = 25$ GeV, m_{col2} (blue -> pink) reduces B and S: 0.23% and 5-6%. m_{coll} (blue -> orange) reduces B and S: 0.04% and 12-13%. S/B in m_{col1} is better than m_{col2} .
- S/B increases for smaller $\Delta m. m_{col1}$ S/B is 2.8 for $\Delta m = 5$ GeV (magenta). Better S/B is needed because no systemic errors considered. m_{coll} , $\Delta m = 5$ GeV (best analysis)

Chirality structure

- Asymmetric behavior exists in all cut flow with τ_R survives more efficiently than τ_L .
- $\Delta m = 25 \rightarrow 5$ GeV, S deviation from unpolarized(*) case
- is $\pm 6\%$ for m_{col2} and $\pm 4.5 \rightarrow 3.3\%$ for m_{col1} .

(*) unpolarized = average between R and L.

