Probing chirality structure in lepton-flavor-violating Higgs decay

 $h \rightarrow \tau \mu$ at the LHCL. Zamakhsyari
Kanazawa University

M. Aoki, S. Kanemura, M. Takeuchi, and L. Z. Phys. Rev. D 107 (2023) 5

KEK, Phenomenology Meeting 2023
7.11.2023

Introduction and background

Motivation

After $m_{h}=125 \mathrm{GeV}$ in 2012
Standard model (SM) is not finished yet...

1. Flavor structure.
2. Higgs sector.
3. BSM phenomena : neutrino mass, DM, Baryon asymmetry.
4. Gravity unification

Focus : flavor structure especially the lepton-flavor violation (LFV)
$\left(h \rightarrow l_{i} l_{j}, l_{i} \rightarrow l_{j} \gamma\right.$, etc.)
testable at previous, current and future experiments.

(Charged) LFV interaction

In SM : Higgs only couple to same flavour leptons.
$-\mathscr{L}_{Y}^{\mathrm{SM}} \supset \overline{l_{L}} \frac{Y_{1}}{\sqrt{2}} l_{R} h+h . c ., \quad m_{l}=\operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right)=\frac{v}{\sqrt{2}} V_{L}^{\dagger} Y_{1} V_{R}$
In BSM : an extra Yukawa matrix -> can not be diagonalized simultaneously -> Source of LFV.
$-\mathscr{L}_{Y} \supset \bar{l}_{L}\left(\frac{Y_{1}}{\sqrt{2}}+\frac{Y_{2}}{\sqrt{2}}\right) l_{R} h+h . c .$,
Example in 2HDM (type III):
$-\mathscr{L}_{Y}^{2 \mathrm{HDM}} \supset{\overline{l_{L}}}_{L}\left(\frac{m_{l}}{v} \sin (\beta-\alpha)+\frac{\rho^{l}}{\sqrt{2}} \cos (\beta-\alpha)\right) l_{R} h+h . c$.
y

$y=\left(\begin{array}{lll}y_{e e} & y_{e \mu} & y_{e \tau} \\ y_{\mu e} & y_{\mu \mu} & y_{\mu \tau} \\ y_{\tau e} & y_{\tau \mu} & y_{\tau \tau}\end{array}\right)$

$$
\begin{aligned}
-\mathscr{L}_{\mathrm{Y}} & \supset \bar{l}_{i}\left(y_{i j} P_{R}+y_{j i}^{*} P_{L}\right) h l_{j} \\
& =\bar{l}_{i} \tilde{y}_{j i} h l_{j}
\end{aligned}
$$

LFV Higgs decay (hLFV)

- hLFV only processes $h \rightarrow l_{i} l_{j} \quad\left(h \rightarrow l_{i}^{+} l_{j}^{-}+h \rightarrow l_{i}^{-} l_{j}^{+}\right)$.

1. Extensive experimental records on $h \rightarrow l_{i} l_{j}$ at the LHC.
2. Upgrade on future $H L-L H C$ up to $L=3000 \mathrm{fb}^{-1}$. [CERN Yellow Rep. (2015) 5]: more data available to be analyzed.

- Which $h \rightarrow l_{i} l_{j}$?

1. $\bar{y}_{i j}$ on $h \rightarrow l_{i} l_{j}$ is strongest among all LFV, except $\mu-e$.
$\bar{y}_{\mu e}: \sim 10^{-4}(h \rightarrow \mu e) \ll \sim 10^{-6}(\mu \rightarrow e \gamma) . h \rightarrow \mu e$ is not considered.
2. $h \rightarrow \tau e$ has more backgrounds than $h \rightarrow \tau \mu$.

- $h \rightarrow \tau \mu$ only.

Process	BR (ATLAS)	BR(CMS)	
$h \rightarrow \mu e$	6.2×10^{-5} [1]	4.4×10^{-5}	[2]
$h \rightarrow \tau e$	2.0×10^{-3} [3]	2.2×10^{-3}	[4]
$h \rightarrow \tau \mu$	1.8×10^{-3} [3]	1.5×10^{-3}	[4]

[1] ATLAS, Phys. Lett. B 801 (2020)
[2] CMS, Phys.Rev.D 108 (2023) 7
[3] ATLAS, JHEP 07, 166 (2023)
[4] CMS, Phys.Rev.D 104 (2021) 3

$$
B R \sim \bar{y}_{i j}^{2}, \quad \bar{y}_{i j} \equiv \sqrt{\left|y_{i j}\right|^{2}+\left|y_{j i}\right|^{2}}
$$

ATLAS, JHEP 07, 166 (2023)
$\bar{y}_{\tau \mu}=\sqrt{\left|y_{\tau \mu}\right|^{2}+\left|y_{\mu \tau}\right|^{2}}<1.2 \times 10^{-3}(h \rightarrow \tau \mu)$

Chirality structure

- Unpolarized. no chirality preference : $h \rightarrow \tau \mu$. Experiment/simulation to derive upper limit (UL) $B R(h \rightarrow \tau \mu) \propto\left|y_{\tau \mu}\right|^{2}+\left|y_{\mu \tau}\right|^{2}<$ some number. -> circle area on the $\left|y_{\mu \tau}\right|-\left|y_{\tau \mu}\right|$ plane.
- Polarized case : $h \rightarrow \tau_{L} \mu_{R}, h \rightarrow \tau_{R} \mu_{L}$.

UL: $B R\left(h \rightarrow \tau_{L} \mu_{R}\right) \propto\left|y_{\tau \mu}\right|^{2}<$ number 1

$$
B R\left(h \rightarrow \tau_{R} \mu_{L}\right) \propto\left|y_{\mu \tau}\right|^{2}<\text { number } 2
$$

- The UL contour will be contribution from both that will modify the shape of the contour.
- Theoretically some BSM models induce a natural chiral structure on hLFV.
[C. W. Chiang, et. al., JHEP 11 (2015) 057] (axion-variant)
$2 \mathrm{HDM}+$ singlet scalar σ with PQ charge $(0,-1,+1)$ for $\left(\Phi_{1}, \Phi_{2}, \sigma\right)$.
$\tau_{R} \mathrm{PQ}$ charge $=-1$.
$\mathscr{L}_{Y} \supset \sum_{i, a} \bar{l}_{L i}\left(Y_{1}\right)_{i a} \Phi_{1} l_{R a}+\bar{l}_{L i}\left(Y_{2}\right)_{i 3} \Phi_{2} \tau_{R}+h . c ., \quad i=1,2,3, \quad a=1,2$
$\mathscr{L}_{Y} \supset-\sum_{l=e, \mu, \tau} \xi_{l} \frac{m_{l}}{v} \bar{l} l-a \sum_{l, l^{\prime}=e, \mu, \tau}\left(H_{l}\right)_{l l^{\prime}} \frac{m_{l}}{v} h \bar{l}_{L} l_{R}^{\prime}+h . c$.
H_{l} is the Hermitian, non diagonal flavor matrix.
$h \rightarrow \tau \mu->h \rightarrow \tau_{L} \mu_{R}: y=\left(H_{l}\right)_{\tau \mu} m_{\tau} / v, \quad h \rightarrow \tau_{R} \mu_{L}: y=\left(H_{l}\right)_{\mu \tau}^{*} m_{\mu} / v$
$h \rightarrow \tau \mu->h \rightarrow \tau_{L} \mu_{R}$

Objectives

- If $h \rightarrow \tau \mu$ is polarized, what is the effects on the coupling contour in $\left|y_{\mu \tau}\right|-\left|y_{\tau \mu}\right|$ plane.
- Is the chirality structure distinguishable?

Simulations and Results

Chirality structure : tau polarization

- In principle the τ polarization $\left(\tau_{R}, \tau_{L}\right)$ information is carried by its decay products.
- $p p \rightarrow h \rightarrow \tau \mu \rightarrow \tau_{h} \nu_{\tau} \mu, \quad \tau_{h}$ is visible hadronic tau decay products : π, ρ, a_{1} (made up more than 50% of tau $B R$).
- Distribution of energy fraction $x_{i}=E_{i} / E_{\tau^{\prime}} \quad i=\pi, \rho, a_{1}$.
- Simulation is done in Madgraph by fixing $\left(y_{\mu \tau}, y_{\tau \mu}\right)=(1,0) ;(0,1)$ for τ_{R}, τ_{L} respectively.
- At parton level and reconstructed level.

Tau polarization : Parton level

- Clear separation between τ_{R}, τ_{L} : hard on τ_{R} and soft on τ_{L}. Very clear in x_{π}. The distributions agree with [B. K. Bullock, et.al, Nucl. Phys. B 395, 499 (1993), K. Hagiwara, et.al., Phys. Lett. B 235, 198 (1990)]
- On ρ, a_{1} the τ_{R}, τ_{L} structure are sensitive on high x but not too sensitive in low x.

Tau polarization : Reconstructed level

- Reconstructed level done by simulating the detector using Delphes.
- Significant reduction at the low x_{i} due to jet energy threshold. Original shapes still preserved.
- The polarization affects the acceptance of number of events.

Signal and background simulation at the LHC $\quad \sqrt{s}=13 \mathrm{TeV}, L=36.1 \mathrm{fb}^{-1}$.

- Signal : pp $\rightarrow h$ (ggf), $\mathrm{h} \rightarrow \tau \mu \rightarrow \tau_{\mathrm{h}} \nu_{\tau} \mu$.
- Chirality structure : $\left(y_{\mu \tau}, y_{\tau \mu}\right)=(0,1),(1,0)$ for $h \rightarrow \tau_{L} \mu_{R}, h \rightarrow \tau_{R} \mu_{L}$.
- Background : $p p \rightarrow Z, Z \rightarrow \tau_{h} \tau_{\mu}$. τ_{μ} are taus decay to muons.

	Selection cuts
	exactly 1μ and 1τ jet (opposite sign)
Baseline	$p_{T, \mu}>27.3 \mathrm{GeV}, \quad p_{T, \tau_{\mathrm{vis}}}>25 \mathrm{GeV}$
	$\left\|\Delta \eta\left(\mu, \tau_{\text {vis }}\right)\right\|<2.0$
	$\sum_{i=l, \tau_{\text {vis }}} \cos \Delta \phi\left(i, \mathbb{E}_{T}\right)>-0.35$

Collinear mass analysis

- Based on $m_{\tau \tau}$ reconstruction.
- $\vec{p}_{T}=\vec{p}_{T}\left(\tau_{1 \text { invis }}\right)+\vec{p}_{T}\left(\tau_{2 \text { invis }}\right) \equiv c_{1} \vec{p}_{T}\left(\tau_{1 \text { vis }}\right)+c_{2} \vec{p}_{T}\left(\tau_{2}\right.$ vis $), \quad c_{i}>0$ [M. Schlaffer, et. al.,Eur.Phys.J.C 74 (2014) 10]
- Solving $c_{1,2}: m_{\mathrm{col} 2}^{2}=\left(p_{\tau_{\text {lvis }}}+p_{\nu_{1},}+p_{\tau_{\text {vis }}}+p_{\nu_{2}}\right)^{2}$
- For $m_{\tau \mu^{\prime}} \mu \equiv \tau_{2}$ vis. [R. Harnik, et.al., JHEP 03 (2013) 026]
- Construction with $1 \tau_{\text {vis }}$.
- Although $\vec{p}\left(\tau_{1}\right.$ invis $) \equiv c_{1} \vec{p}\left(\tau_{1}\right.$ vis $), \vec{p}_{T}$ is not completely parallel with $\vec{p}_{T, \tau_{1 \text { vis }}}$:

$$
\vec{p}_{T}=c_{1} \vec{p}_{T, \tau_{1 \text { vis }}}+c_{\perp} \hat{n}_{T, \perp}
$$

- Solving for $c_{1}: m_{\mathrm{coll}}^{2}=\left(p_{\tau_{1 \mathrm{vis}}}+p_{\nu_{1}}+p_{\mu}\right)^{2}$.

The distribution of $m_{\text {col2 }}$ and $m_{\text {col1 }}$

- $m_{\text {col1 }}$ has a sharper peak and clear separation between S and B than $m_{\text {col2 }}$.
- Better signal region using $\left|m_{\text {colli }}-m_{h}\right|<\Delta m$, with $\Delta m=25$ and 5 GeV .

Cut flows for signal and background

		Signal (S)		
		$\begin{gathered} h \rightarrow \\ \tau_{R} \end{gathered}$	$\begin{gathered} \tau \mu_{(B R} \\ \tau_{0} \end{gathered}$	$\begin{gathered} =1 \%) \\ \tau_{L} \end{gathered}$
	σ at 13 TeV LHC	355 fb		
	for $\mathcal{L}=36.1 \mathrm{fb}^{-1}$	12795		
	baseline cuts	1979	1861	1742
$\begin{array}{r} x_{i}=1 /\left(c_{i}+1\right) \\ m_{\text {coll2 }} \end{array}$	$x_{1}>0$ and $x_{2}>0$	1672	1576	1480
	$\left\|m_{\text {coll2 }}-m_{h}\right\|<25 \mathrm{GeV}$	717	680	643
$m_{\text {coll1 }}$	$c_{1}>0$	1765	1682	1608
	$\left\|m_{\text {coll1 }}-m_{h}\right\|<25 \mathrm{GeV}$	1626	1560	1493

Chirality structure

- Asymmetry number of signals,

$$
S\left(\tau_{R}\right)>S\left(\tau_{L}\right)
$$

- $\pm 6 \%$ difference with τ_{0} for $m_{\text {col1 }}$ and $m_{\text {col2 }}$.
- $\Delta m=5 \mathrm{GeV}$, polarization sensitivity for $m_{\text {col1 }}$ reduced to 3.3% while for $m_{\text {col2 }}$ stays at 6\%.

The number of events are normalized to ATLAS $36.1 \mathrm{fb}^{-1}$.
[Phys. Lett. B 800, 135069 (2020)]

Sensitivity to the chirality structure

$$
\Delta m=25 \mathrm{GeV}
$$

	$S^{95 \%}$	$\mathrm{BR}^{95 \%}(\%)$		$\bar{y}_{\tau \mu}^{95 \%}$			
		τ_{R}	τ_{0}	τ_{L}	τ_{R}	τ_{0}	τ_{L}
$m_{\text {col2 }}$	342	0.48	0.50	0.53	0.0020	0.00205	0.0021
$m_{\text {col1 }}$	148	0.091	0.095	0.099	0.00087	0.00089	0.00090

1. $S^{95 \%}=1.65 \sqrt{B}$ is the frequentist onesided $95 \% \mathrm{CL}$ signal upper bound.
2. $B R^{95 \%}=\left(S^{95 \%} / S\right) \operatorname{BR}(h \rightarrow \tau \mu)$, with
$\mathrm{BR}(\mathrm{h} \rightarrow \tau \mu)=1 \%$.
3. $\mathrm{BR}=0.12 \% \times \frac{\left(\left|y_{\mu \tau}\right|^{2}+\left|y_{\tau \mu}\right|^{2}\right)}{10^{-6}}$ for τ_{L}, τ_{R}.
4. Any distribution

$$
\begin{aligned}
& f\left(x ; y_{\mu \tau}, y_{\tau \mu}\right)=\left|y_{\mu \tau}\right| f_{R}(x)+\left|y_{\tau \mu}\right| f_{L}(x) \\
& \left(y_{\mu \tau}, y_{\tau \mu}\right): \\
& \tau_{L} \sim(0,1), \quad \tau_{R} \sim(1,0), \quad \tau_{0} \sim(1 / 2,1 / 2)
\end{aligned}
$$

```
\Deltam}=25\textrm{GeV
```

Modification on $\left|y_{\mu \tau}\right|-\left|y_{\tau \mu}\right|$ contour

- Modification on the sensitivity contour from circle (unpolarized) to ellipse (polarized)
- $m_{\text {col2 }}$ polarized -> unpolarized modify the contour up to $\pm 2-3 \%$ on $y_{\mu \tau}-y_{\tau \mu}$ (BR up to $\pm 4-6 \%)$.
- The sensitivity is improved 5 times from $m_{\text {col2 }}$ to $m_{\text {col1 }}$.

$$
\Delta m=25 \mathrm{GeV}
$$

$$
\mathrm{L}=36.1 \mathrm{fb}^{-1}, \mathrm{ggF} \tau_{h} \mu
$$

- $m_{\text {col2 }}$ appeared to be close to the ATLAS expected result (dashed-pink). If systematic error analysis is included, the sensitivity by $m_{\text {col2 }}$ analysis will be worse. However, $m_{\text {coll }}$ has a better sensitivity should persist.

$$
\begin{aligned}
& \text { Expected result ATLAS } \\
& \mathrm{BR}(h \rightarrow \tau \mu)=0.57 \% \text { (non-VBF) } \\
& \bar{y}_{\tau \mu}=0.0022
\end{aligned}
$$

Sensitivity for the chirality structure

- Probing the chirality structure given a finite number of signals.
- Scenarios $\operatorname{BR}(h \rightarrow \tau \mu)=0.12 \%$ or $\bar{y}_{\tau \mu}=10^{-3}:$
$\left(\hat{y}_{\mu \tau}, \hat{y}_{\tau \mu}\right)= \begin{cases}\left(10^{-3}, 0\right), & \tau_{R} \\ \left(0,10^{-3}\right), & \tau_{L} \\ \left(7.1 \times 10^{-4}, 7.1 \times 10^{-4}\right),\end{cases}$
unpolarized
- x_{1} distribution of $m_{\text {coll }}$. Two signal regions (SR) : SR1 ($x_{1}<0.6$) and SR2 ($x_{1} \geq 0.6$).

$$
m_{\text {col1 }}, \Delta m=25 \mathrm{GeV}, \mathrm{~L}=36.1 \mathrm{fb}^{-1}
$$

$\Delta m_{\text {col1 }}^{\text {th }}$ SR		$N_{i, B R=0.12 \%}$			$$		$N_{i, \text { obs }}$ for each scenario		
			τ_{L}	$Z \rightarrow \tau \tau$					τ_{L}
	SR_{1}	50.6	66.1	3384	0.26	0.37	3436	3443	3451
25 GeV	SR_{2}	144.5	113.1	2331	0.74	0.63	4807	4791	4776
	total	195.1	179.2	8046		1	8243	8234	8227

- Expected contour region deviates from the observed events in each scenario : χ^{2} two dimensional parameter fit.

$$
\chi^{2}=\left(\frac{N_{1, \exp }-N_{1, \mathrm{obs}}}{\sqrt{N_{1, \mathrm{exp}}}}\right)^{2}+\left(\frac{N_{2, \exp }-N_{2, \mathrm{obs}}}{\sqrt{N_{2, \exp }}}\right)^{2}->\quad \chi^{2}=\left(\frac{r \Delta N_{R}+l \Delta N_{L}}{\sqrt{N_{1, \mathrm{obs}}}}\right)^{2}+\left(\frac{(1-r) \Delta N_{R}+(1-l) \Delta N_{L}}{\sqrt{N_{2, \mathrm{obs}}}}\right)^{2}
$$

$\Delta N_{R}=N_{R}\left(\frac{L}{36.1 \mathrm{fb}^{-1}}\right) \frac{\left(y_{\mu \tau}-\hat{y}_{\mu \tau}\right)^{2}}{10^{-6}}, \Delta N_{L}=N_{L}\left(\frac{L}{36.1 \mathrm{fb}^{-1}}\right) \frac{\left(y_{\tau \mu}-\hat{y}_{\tau \mu}\right)^{2}}{10^{-6}}$ are the deviations from the value N_{R} and $N_{L} . \quad r, l=\left(N_{1} / N\right)_{R, L}$.

- τ_{R}, τ_{L} can be distinguished at $2.3 \sigma(4.4 \sigma)$ for $1000(3000) \mathrm{fb}^{-1}$ and τ_{0} can be distinguished at 1.9 σ at $3000 \mathrm{fb}^{-1}$.
- $\Delta m=5 \mathrm{GeV} . \tau_{R}, \tau_{0}\left(\tau_{L}\right)$ can already be distinguished at $2.1 \sigma(4.8 \sigma)$ for $139 \mathrm{fb}^{-1}$.

Conclusion

1. Polarization affects the acceptance of number of events.
2. The collinear mass $m_{\text {coll }}$ gives a better S / B ratio for signal-background analysis on hLFV $h \rightarrow \tau \mu$ than $m_{\text {col2 } 2}$.
3. The sensitivity on the $\bar{y}_{\tau \mu}$ is modified up to $\pm 2-3 \%$ due to the polarization for $\Delta m=25$ GeV .
4. Chirality structure can be probed at the near future HL-LHC :
a. For $\Delta m=25 \mathrm{GeV}, \tau_{R}, \tau_{L}$ can be distinguished at least at $1000 \mathrm{fb}^{-1}$ with confidence 2.3σ and τ_{0} at $3000 \mathrm{fb}^{-1}$ with 1.9σ.
b. For $\Delta m=5 \mathrm{GeV}$, the chirality structure will become sensitive at $139 \mathrm{fb}^{-1}$. Assuming τ_{R}, $\tau_{0}\left(\tau_{L}\right)$ can be distinguished at $2.1 \sigma(4.8 \sigma)$.

Thank You
 ありがとうございます

Theory : Tau chirality

- The tau chirality : spin polarization (helicity) of its decay product. Example : $\tau^{-} \rightarrow \pi^{-} \nu_{\tau}$.
At the τ^{-}rest frame
$\cos \theta_{\pi}=\hat{n}_{\tau} \cdot \hat{p}_{\pi^{\prime}} \frac{1}{\Gamma_{\pi}} \frac{d \Gamma_{\pi}}{d \cos \theta_{\pi}}=\frac{1}{2}\left(1+\kappa_{\pi} P \cos \theta_{\pi}\right)$
The distribution can be written in term of energy fraction $x_{\pi}=E_{\pi} / E_{\tau}$ so that
$\frac{1}{\Gamma_{\pi}} \frac{d \Gamma_{i}}{d x_{\pi}}=1+\kappa_{\pi} P\left(2 x_{\pi}-1\right)$,

$\kappa_{i} \in[-1,1]$ is spin analyzing power.
$\mathrm{P}= \pm 1$ is positive or negative helicity.

$$
\begin{aligned}
& \cos \theta=\frac{2 x_{\pi}-1-a^{2}}{\beta\left(1-a^{2}\right)} \\
& a=m_{\pi} / m_{\tau}, a \approx 0 \text { for } \pi \\
& \beta=\sqrt{1-m_{\tau}^{2} / E_{\tau}^{2}} \approx 1 \text { (in collinear limit) }
\end{aligned}
$$

Tau decay products distribution

- The dominant hadronic tau $\left(\tau_{h}\right)$ decay products : π, ρ, a_{1} (up to 50% of tau BR).
- Clear separation between $\tau_{R}, \tau_{L}: \tau_{R}$ dominate high x_{i}, and τ_{L} is vice versa.
- Modification on the x_{i} distributions of ρ, a_{1} come from their κ_{i}. (All labels should be able to be read)
[Bullock, et. al., Nucl. Phys. B, 395:499, (1993)].

ATLAS, JHEP 07, 166 (2023)
$\bar{y}_{\tau \mu}=\sqrt{\left|y_{\tau \mu}\right|^{2}+\left|y_{\mu \tau}\right|^{2}}<1.2 \times 10^{-3}$

Chirality structure (problem*)

- Experimental: effect of chirality structure on hLFV has not been observed.
At the upper limit contour:

$$
\begin{aligned}
B R(h \rightarrow \tau \mu) & \sim\left|y_{\tau \mu}\right|^{2}+\left|y_{\mu \tau}\right|^{2}<\text { some number. } \\
& ->\left(y_{\mu \tau}, y_{\tau \mu}\right)
\end{aligned}
$$

- No spin correlation effects:

$$
\begin{array}{ll}
B R\left(h \rightarrow \tau_{L} \mu_{R}\right) \sim\left|y_{\tau \mu}\right|^{2}, & ->(0, b) \\
B R\left(h \rightarrow \tau_{R} \mu_{L}\right) \sim\left|y_{\mu \tau}\right|^{2}, &
\end{array}
$$

- Unpolarized (no chiral structure) : $\mathrm{a}=\mathrm{b}$ or $\bar{y}_{\tau \mu}$ is a constant. Circle in $y_{\mu \tau}-y_{\tau \mu}$ plane.
- Polarized case, $\mathrm{a} \neq \mathrm{b}$ and $\bar{y}_{\tau \mu}$ is not a constant.

Theoretically : models with a chiral hLFV has interesting phenomenology.
Example in [c. W. Chiang, et. al., JHEP 11 (2015) 057] : 2HDM + singlet scalar σ.
$U(1)_{\mathrm{PQ}}$ charge : $(0,-1,+1)$ for $\Phi_{1}, \Phi_{2}, \sigma$.
σ gets a vev at high energy scale, so in low energy, the theory is 2 HDM .
τ_{R} also has a-1 PQ charge.
$\mathscr{L}_{Y} \supset \bar{l}_{L i}\left(Y_{1}\right)_{i a} \Phi_{1} l_{R a}+\bar{l}_{L i}\left(Y_{2}\right)_{i 3} \tau_{R}+h . c ., i=1,2,3, \quad a=1,2$
Rotate to the eigen mass basis, both for the Higgs doublets and the leptons :

$$
\begin{aligned}
& \mathscr{L}_{Y} \supset-\sum_{l} \xi_{l} \frac{m_{f}}{v} \overline{l l}-a \sum_{l, l^{\prime}=e, \mu, \tau}\left(H_{l}\right)_{l l} \frac{m_{l}}{v} h \bar{l}_{L} l_{R}^{\prime}+h . c . \\
& H_{e}=V_{L}\left(\begin{array}{lll}
0 & & \\
& 0 & \\
& 1
\end{array}\right) V_{L}^{\dagger}-\left(\begin{array}{cc}
0 & \\
& 0 \\
& 1
\end{array}\right), a=(\tan \beta-\cot \beta) \cos (\beta-\alpha), \\
& \xi_{l}=\left\{\begin{array}{l}
\sin (\beta-\alpha)+\cot \beta \cos (\beta-\alpha), \text { for }(1=\tau) \\
\sin (\beta-\alpha)-\tan \beta \cos (\beta-\alpha) \text { for }(l \neq \tau)
\end{array}\right.
\end{aligned}
$$

Result: In $h \rightarrow \tau^{-} \mu^{+}$, the τ is left handed for some benchmark parameters.

- The ATLAS number is recovered for $m_{\text {col2 }}$ for $x_{1,2}>0$ with difference in S and B average to 30% and 7% respectively.

Cuts

- Baseline cuts.

1. Exactly 1 isolated μ and 1τ jet (opposite sign) with $p_{T, \mu}=27.3 \mathrm{GeV}$ and $p_{T, \tau_{\mathrm{vis}}}=25 \mathrm{GeV}$. $\tau_{\text {vis }}$ denotes the visible decay product of tau jet, i.e. π, ρ or a_{1}
2. To reduce background from misidentified τ, we need $\left|\Delta \eta\left(\mu, \tau_{\text {vis }}\right)\right|<2.0$.
3. To avoid \mathbb{E}_{T} coming from other source, we need $\sum_{i=\mu, \tau_{\mathrm{vis}}} \cos \Delta \phi\left(i, \mathbb{E}_{T}\right)>-0.35$.

- Further signal-background separation is done by using collinear mass $m_{\text {col }}$ analysis : two missing particles and one missing particle.

Collinear mass $m_{\text {col2 }}$

- Commonly used for reconstructing $m_{\tau \tau}$ of $h \rightarrow \tau \tau$. We call this $m_{\text {col2 }}$.
- At high energy/high- p_{T} condition, the decay products of tau (visible or not) will be collinear to the tau momentum.
$\vec{p}_{\tau_{\text {vis }}}=x \vec{p}_{\tau}, \quad \vec{p}_{\tau_{\text {invis }}}=(1-x) \vec{p}_{\tau}, \quad 0 \leq x \leq 1$.
- The \vec{p}_{T} accounts for the two neutrinos from the $h \rightarrow \tau \tau$:

$$
\vec{p}_{T}=c_{1} \vec{p}_{T, \tau_{1 \mathrm{vis}}}+c_{2} \vec{p}_{T, \tau_{2 \mathrm{vis}}}, \quad c_{i}=\left(1-x_{i}\right) / x_{i}>0 .
$$

- Solving for c_{1}, c_{2}, we can reconstruct the $m_{\tau \tau}$ mass as
$m_{\text {col2 }}^{2}=\left(p_{\tau_{\text {lvis }}}+p_{\tau_{2 \text { vis }}}+p_{\nu_{\text {lreco }}}+p_{\nu_{2 \text { reco }}}\right)^{2}$, where $\vec{p}_{\nu_{\text {ireco }}}=c_{i} \vec{p}_{\tau_{i v i s}}$.
- For the $m_{\tau \mu}$, we assume the μ to be the visible product of τ_{2}, i.e. $\tau_{2, \text { vis }}$. [short sentences only]

Collinear mass $m_{\text {coll }}$

- A better natural way of reconstructing the $m_{\tau \mu}$ is by assuming one missing particle.
$\vec{p}_{T} \propto c_{1} \vec{p}_{T, \tau_{\text {vis }}}$.
- However due to the detector and measurement effects, the \vec{p}_{T} is not completely parallel with $\vec{p}_{T, \tau_{\mathrm{I} v i s}}$. $\vec{p}_{T}=c_{1} \vec{p}_{T, \tau_{\text {lvis }}}+c_{\perp} \hat{n}_{T, \downarrow}$ where $\hat{n}_{T, \perp}$ is the unit vector orthogonal to $\vec{p}_{T, \tau_{\text {lusi }}}$.
- Solving for c_{1} from $\cos \theta=\vec{p}_{T} \cdot \vec{p}_{T, \tau_{\text {vis }}}\left|\bar{p}_{T}\right| \mid \vec{p}_{T, \tau_{\text {lis }}}$ I, we can reconstruct the $m_{\tau \mu}$ mass as $m_{\text {coll }}^{2}=\left(p_{\tau_{\text {lvis }}}+p_{\nu_{\text {leeco }}}+p_{\mu}\right)^{2}$, where $\vec{p}_{\nu_{\text {leeco }}}=c_{1} \vec{p}_{\mathrm{T}_{\text {vis }}}$.

From $95 \% \mathrm{CL}$ BR we can get $\bar{y}_{\tau \mu, L}, \bar{y}_{\tau \mu, R}$ at $95 \% \mathrm{CL}$ using:
$\mathrm{BR}_{R, L}^{95 / \sigma}=0.12 \% \times \frac{\bar{y}_{\mu \mu R, L}^{2}}{10^{-6}}$
$f(x)=a f(x)_{R}+(1-a) f(x)_{L}$

- For $\Delta m=25 \mathrm{GeV}$, the sensitivity is improved 5 times from $m_{\text {col2 }}$ to $m_{\text {col1 }}$.
- Coincidentally $m_{\text {col2 }}$ sensitivity is close to the non$\operatorname{VBF} \tau_{h} \mu$ mode ATLAS with $\operatorname{BR}(h \rightarrow \tau \mu)=0.57 \%$ or $\bar{y}_{\tau \mu}=0.0022$ (pink dashed line). [1]
- If we include the systematic errors, our result may be invalid, however the $m_{\text {col1 }}$ has a better sensitivity should persist. [this is the last one]
- The chirality effect on the sensitivity $\bar{y}_{\tau \mu}$ modifies the contour from circle into ellipse.
- It modifies $\pm 4-6 \%$ on BR or $\pm 2-3 \%$ on the unpolarized $\left(y_{\mu \tau}, y_{\tau \mu}\right)$ plane. We expect similar modification on the ATLAS result also.

LFV experiments status

The LFV interaction $h \rightarrow l_{i} l_{j}$ leads to important (low-energy) LFV processes that has been experimentally on.

Process	BR present bound Future sensitivity	
$\mu \rightarrow e \gamma$	$3.1 \times 10^{-13}[1]$	$6 \times 10^{-14}[2]$
$\tau \rightarrow e \gamma$	$3.3 \times 10^{-8}[3]$	$\sim 10^{-9}[4]$
$\tau \rightarrow \mu \gamma$	$4.4 \times 10^{-8}[3]$	$\sim 10^{-9}[4,5]$
$\mu \rightarrow e e e$	$1.0 \times 10^{-12}[6]$	$\sim 10^{-16}[7]$
$\tau \rightarrow e e e$	$2.7 \times 10^{-8}[8]$	$\sim 4 \times 10^{-10}[5]$
$\tau \rightarrow \mu \mu \mu$	$2.1 \times 10^{-8}[8]$	$\sim 5 \times 10^{-10}[5]$
$\tau^{-} \rightarrow e^{-} \mu^{+} \mu^{-}$	$2.7 \times 10^{-8}[8]$	$\sim 5 \times 10^{-10}[5]$
$\tau^{-} \rightarrow \mu^{-} e^{+} e^{-}$	$1.8 \times 10^{-8}[8]$	$\sim 5 \times 10^{-10}[5]$
$\tau^{-} \rightarrow e^{+} \mu^{-} \mu^{+}$	$1.7 \times 10^{-8}[8]$	$\sim 4 \times 10^{-10}[5]$
$\tau^{-} \rightarrow \mu^{+} e^{-} e^{+}$	$1.5 \times 10^{-8}[8]$	$\sim 3 \times 10^{-10}[5]$

[1] MEG-II, arXiv: 2310.12614
[2] A. M. Baldini, et.al. (MEG proposal), arXiv:1301.7225
[3] BaBar, Phys. Rev. Lett. 104, 021802 (2010)
[4] BaBar, Belle, Eur. Phys. J. C 74, 3026 (2014)
[5] Belle-II, PTEP 2019, 123C01 (2019), Err: PTEP 2020, 029201 (2020)
[6] SINDRUM, Nucl. Phys. B 299, 1 (1988)
[7] A. Blondel et al. (Mu3e proposal), arXiv:1301.6113
[8] Belle, Phys. Lett. B 687, 139 (2010)

Cut flows for collinear mass analysis $L=36.1 \mathrm{fb}^{-1}$

Notes.

1. The number of events are normalized to ATLAS $36.1 \mathrm{fb}^{-1}$. [Phys. Lett. B 800, 135069 (2020)]
2. $S^{95 \%}=1.65 \sqrt{B}$ is the one-sided 95% CL upper bound on the signals.
3. $B R^{95 \%}=\left(S^{95 \%} / S\right) \mathrm{BR}(h \rightarrow \tau \mu)$, with $\mathrm{BR}(\mathrm{h} \rightarrow \tau \mu)=1 \%$.

S/B

- $\Delta m=25 \mathrm{GeV}, m_{\text {col2 }}$ (blue -> pink) reduces B and S : 0.23% and $5-6 \%$. $m_{\text {col1 }}$ (blue -> orange) reduces B and S: 0.04% and $12-13 \%$. S / B in $m_{\text {col1 }}$ is better than $m_{\text {col2 }}$.
- S/B increases for smaller $\Delta m . m_{\text {col1 }} \mathrm{S} / \mathrm{B}$ is 2.8 for $\Delta m=5 \mathrm{GeV}$ (magenta). Better S / B is needed because no systemic errors considered. $m_{\text {col1 }}, \Delta m=5 \mathrm{GeV}$ (best analysis)

Chirality structure

- Asymmetric behavior exists in all cut flow with τ_{R} survives more efficiently than τ_{L}.
- $\Delta m=25 \rightarrow 5 \mathrm{GeV}$, S deviation from unpolarized ${ }^{*}$) case is $\pm 6 \%$ for $m_{\text {col2 }}$ and $\pm 4.5 \rightarrow 3.3 \%$ for $m_{\text {col1 }}$.
(*) unpolarized = average between R and L .

