Neutrino models based on the $U(1)_{L_{\mu}-L_{\tau}}$ gauge symmetry

Coh Miyao Kyushu U. KEK-ph 2023 7th November 2023

Collaborations with K. Asai, S. Okawa, and K. Tsumura.

Background and Purpose

Background

• The discrepancy of muon g-2 between the SM and experimental results.

 \rightarrow U(1)_{L_u-L_t} gauge models can explain.

• The recent experiments of the neutrino oscillation become more precise.

 \rightarrow The minimal U(1)_{L_µ-L_τ} gauge models seem hard to describe the neutrino physics.

Cited from https://www-sk.icrr.u-tokyo.ac.jp/sk/

Purpose

- To find the $U(1)_{L_{\mu}-L_{\tau}}$ gauge models which are consistent to the latest experiments.
- To get predictions for neutrino masses, Majorana phases, and so on.

		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 6.4)$	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
with SK atmospheric data	$\sin^2 heta_{12}$	$0.303\substack{+0.012\\-0.012}$	$0.270 \rightarrow 0.341$	$0.303\substack{+0.012\\-0.011}$	$0.270 \rightarrow 0.341$
	$ heta_{12}/^{\circ}$	$33.41\substack{+0.75 \\ -0.72}$	$31.31 \rightarrow 35.74$	$33.41\substack{+0.75 \\ -0.72}$	$31.31 \rightarrow 35.74$
	$\sin^2 heta_{23}$	$0.451\substack{+0.019\\-0.016}$	$0.408 \rightarrow 0.603$	$0.569\substack{+0.016\\-0.021}$	$0.412 \rightarrow 0.613$
	$ heta_{23}/^{\circ}$	$42.2^{+1.1}_{-0.9}$	$39.7 \rightarrow 51.0$	$49.0^{+1.0}_{-1.2}$	$39.9 \rightarrow 51.5$
	$\sin^2 heta_{13}$	$0.02225\substack{+0.00056\\-0.00059}$	$0.02052 \rightarrow 0.02398$	$0.02223\substack{+0.00058\\-0.00058}$	$0.02048 \rightarrow 0.02416$
	$ heta_{13}/^\circ$	$8.58\substack{+0.11 \\ -0.11}$	$8.23 \rightarrow 8.91$	$8.57^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.94$
	$\delta_{ m CP}/^{\circ}$	232^{+36}_{-26}	$144 \rightarrow 350$	276^{+22}_{-29}	$194 \rightarrow 344$
	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.41\substack{+0.21 \\ -0.20}$	$6.82 \rightarrow 8.03$	$7.41\substack{+0.21 \\ -0.20}$	$6.82 \rightarrow 8.03$
	$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.507\substack{+0.026\\-0.027}$	$+2.427 \rightarrow +2.590$	$-2.486\substack{+0.025\\-0.028}$	$-2.570 \rightarrow -2.406$

Introduction

Neutrino Mass Matrix

• In general,

 $\mathcal{M}_{\nu_L} = U_{\text{PMNS}} \operatorname{diag}(m_1 \ m_2 \ m_3) \ U_{\text{PMNS}}^T \equiv \mathcal{M}_{\nu_L}^{\text{gen}}.$

$$U_{\rm PMNS} \equiv \begin{pmatrix} V_{11} & V_{12} & V_{13} \\ V_{21} & V_{22} & V_{23} \\ V_{31} & V_{32} & V_{33} \end{pmatrix} \begin{pmatrix} 1 & & & \\ & e^{\frac{i\alpha_2}{2}} & & \\ & & & e^{\frac{i\alpha_3}{2}} \end{pmatrix}.$$

 m_i :light neutrino mass α_i :Majorana phase V_{ij} :matrix component including mixing angles and CP phase

• Through the seesaw mechanism

$$\mathcal{M}_{\nu_L} \simeq -\mathcal{M}_D \ \mathcal{M}_R^{-1} \mathcal{M}_D^T.$$

 \rightarrow Some equations arise by comparing these.

Two Zero Texture (Minor) Structure Mass Matrix

Classification of structures;

$$\mathbf{B_3:}\begin{pmatrix} * & 0 & * \\ 0 & 0 & * \\ * & * & * \end{pmatrix}, \mathbf{B_4:}\begin{pmatrix} * & * & 0 \\ * & * & * \\ 0 & * & 0 \end{pmatrix}, \mathbf{C:}\begin{pmatrix} * & * & * \\ * & 0 & * \\ * & * & 0 \end{pmatrix}$$

- Thorough the seesaw mechanism, the neutrino mass matrix (or its inverted one) often has such structure.
 - Two components of \mathcal{M}_{ν_L} are zero \rightarrow Two zero texture Two components of $\mathcal{M}_{\nu_I}^{-1}$ are zero \rightarrow Two zero minor

<u>The mass matrix with such structures</u> give us two equations. \rightarrow <u>Predictions</u>

Main Part

Minimal $U(1)_{L_{\mu}-L_{\tau}}$ gauge model

- Fields : SM + three right-handed neutrino N_i + one scalar field.
- Symmetry : SM gauge $\times U(1)_{L_{\mu}-L_{\tau}}$ gauge.

Lepton		$(\ell_e \ \ell_\mu \ \ell_\tau)$		$(e_R \ \mu_R \ au_R)$	$(N_e N_\mu N_\tau)$
$\mathrm{U}(1)_{L_{\mu}-L_{ au}}$ charge		(0 +1 -1)		(0 +1 -1)	(0 +1 -1)
Scalar SU(2		σ 2) singlet	SU	Φ_{+1} (2) doublet	Φ_{-1} SU(2) doublet
charge	+1		+1		-1

Analysis of SM+ N_i + Φ_{+1} Model

• **B**₃ texture :
$$(\mathcal{M}_{\nu_L})_{[1,2],[2,2]} = 0$$

$$\left(\mathcal{M}_{\nu}^{\text{gen}}\right)_{12} = m_1 V_{11} V_{21} + m_2 e^{i\alpha_2} V_{12} V_{22} + m_3 e^{i\alpha_3} V_{13} V_{23} = 0 \left(= \left(\mathcal{M}_{\nu}\right)_{12}\right).$$

$$\left(\mathcal{M}_{\nu}^{\text{gen}}\right)_{22} = m_1 V_{21}^2 + m_2 e^{i\alpha_2} V_{22}^2 + m_3 e^{i\alpha_3} V_{23}^2 = 0 \left(= \left(\mathcal{M}_{\nu}\right)_{22}\right).$$

$$e^{i\alpha_{2}} \equiv \frac{m_{1}}{m_{2}} R_{2}(\theta_{12}, \theta_{13}, \theta_{23}, \delta) \equiv \frac{R_{2}}{|R_{2}|}$$
$$e^{i\alpha_{3}} \equiv \frac{m_{1}}{m_{3}} R_{3}(\theta_{12}, \theta_{13}, \theta_{23}, \delta) \equiv \frac{R_{3}}{|R_{3}|}$$

 θ_{ij} : mixing angle δ : CP phase

• To rewrite mass-squared difference in case of Normal ordering(NO)

By fixing θ_{12} , θ_{13} , Δm^2_{21} , Δm^2_{31} as the best-fit value of NuFITv5.2, θ_{23} -dependence of δ are found.

Neutrino mass and Majorana phase can be written by θ_{23} !

Light Neutrino Mass

$$\begin{split} m_3 &= \sqrt{\frac{\Delta m_{31}^2}{1 - \frac{1}{|R_3(\theta_{12}, \theta_{13}, \theta_{23}, \delta_{CP})|^2}}} \\ m_1 &= \sqrt{m_3^2 - \Delta m_{31}^2} \\ m_2 &= \sqrt{m_1^2 + \Delta m_{21}^2} = \sqrt{m_3^2 + \Delta m_{21}^2 - \Delta m_{31}^2} \end{split}$$

• These masses can be described in terms of θ_{23} .

 $(\theta_{12}, \theta_{13}, \Delta m^2_{21}, \Delta m^2_{31})$ are fixed as best fit value of NuFITv5.2)

- The range of θ_{23} shift to left in the latest NuFITv5.2.
- The mass sum constraint are relaxed by considering mass ordering.

• The range of θ_{23} shift to left in the latest NuFITv5.2.

The mass sum constraint are relaxed by considering mass ordering.

Result of analysis 2

Results of other models

Moldel	Structure	Normal Ordering	Inverted ordering
SM + N _i + σ	c minor	Viable in 2σ	Null
$SM + N_i + \Phi_{-1}$	B ₄ texture	Excluded	Excluded

Conclusion

• We revisited the minimal $U(1)_{L_{\mu}-L_{\tau}}$ gauge model based on the latest NuFITv5.2 data. The model with SU(2) singlet scalar σ was viable in 2σ , and the model with SU(2) doublet scalar Φ was viable at 3σ in case of Inverted ordering when the model has B_3 texture.

Outlook

• The above analysis was only focusing on the mass matrix structure. However, we can consider some model dependent constraints. These constraints may exclude the model with Φ . Therefore, we research the constraints. The results is coming soon.

BACKUP

NuFITv4.0

		Normal Ore	lering (best fit)	Inverted Ordering $(\Delta \chi^2 = 9.3)$	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
with SK atmospheric data	$\sin^2 \theta_{12}$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$
	$\theta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82^{+0.78}_{-0.75}$	$31.62 \rightarrow 36.27$
	$\sin^2 \theta_{23}$	$0.582\substack{+0.015\\-0.019}$	$0.428 \rightarrow 0.624$	$0.582\substack{+0.015\\-0.018}$	$0.433 \rightarrow 0.623$
	$\theta_{23}/^{\circ}$	$49.7^{+0.9}_{-1.1}$	$40.9 \rightarrow 52.2$	$49.7^{+0.9}_{-1.0}$	$41.2 \rightarrow 52.1$
	$\sin^2 \theta_{13}$	$0.02240\substack{+0.00065\\-0.00066}$	$0.02044 \rightarrow 0.02437$	$0.02263\substack{+0.00065\\-0.00066}$	$0.02067 \to 0.02461$
	$\theta_{13}/^{\circ}$	$8.61_{-0.13}^{+0.12}$	$8.22 \rightarrow 8.98$	$8.65_{-0.13}^{+0.12}$	$8.27 \rightarrow 9.03$
	$\delta_{\mathrm{CP}}/^{\circ}$	217^{+40}_{-28}	$135 \to 366$	280^{+25}_{-28}	$196 \to 351$
	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.39\substack{+0.21 \\ -0.20}$	$6.79 \rightarrow 8.01$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$
	$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.525^{+0.033}_{-0.031}$	$+2.431 \rightarrow +2.622$	$-2.512\substack{+0.034\\-0.031}$	$-2.606 \rightarrow -2.413$

From http://www.nu-fit.org/?q=node/177

C Minor (NO)

B4 Texture (NO)

B4 Texture (IO)

Model Dependent Constraints

More Constraints. Coming Soon…