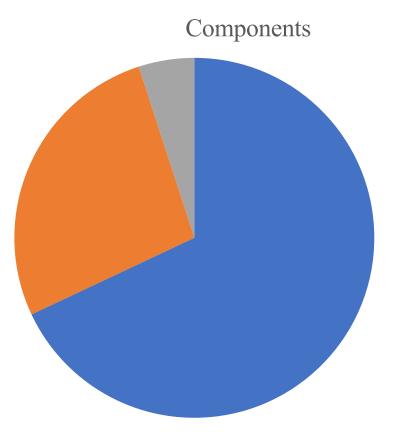
Cosmological Axions Challenge String Theory

Shota Saito^A

with Dan Kondo^A, Hitoshi Murayama^{ABC}, Risshin Okabe^A, Masahito Yamazaki^A and Yu Watanabe^A

Affiliation : Kavli IPMU^A, UC Berkeley^B and LBNL^C


2023/11/9 at Tsukuba

Contents

- Introduction ACDM works well Problems of ACDM • Cosmological axions as solutions H_0 tension S_8 tension cosmic birefringence dark sector
- Swampland program some conjectures analysis result • Summary conclusion future work

ΛCDM model

- ΛCDM describes the expanding universe.
 Λ : cosmological constant
 CDM : cold dark matter
- Baryon is only 5%
- Although 95% of ACDM is unknown dark sector, it explains most of our universe.

dark energydark matterbaryon

ΛCDM works well! Unfortunately, there are still some problems!

Problems of ΛCDM model

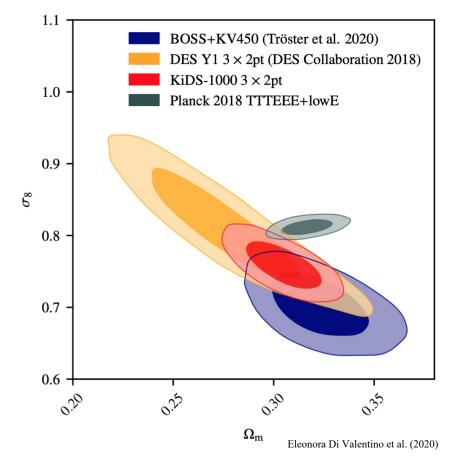
- H_0 tension ... discrepancy of Hubble constant
- S_8 tension ... discrepancy of growth parameter
- Cosmic birefringence ... rotation of CMB polarization
- Dark sector ... dark matter and dark energy

Cosmological axions can solve these problems!

Cosmological axion for H_0 tension

- H_0 tension is about 5σ discrepancy of Hubble constant between CMB and local distance ladder.
- Early dark energy can solve this, which behaves like a cosmological constant before recombination and dilutes away faster than radiation.
- Axion field : $\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$ Mass should be $m_a \approx H_{rec}$ (friction)

85 Distance Ladder (Cepheids) ♦ ΛCDM KP 80 $[km \ s^{-1} \ Mpc^{-1}]$ **SHOES** CHP SHOES **SHOES** 75 SHOES 70 WMAP3 WMAP H_0 WMAP1 **P18** 65 P13 BAO 2010 2015 2000 2005 2020 Year


L. Perivolaropoulos et al. (2022)

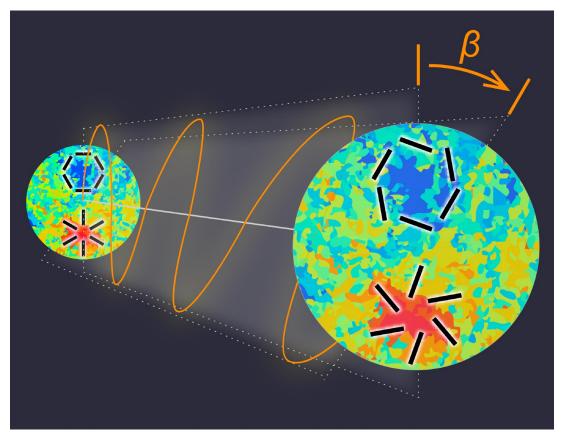
Axion mass is expected in the range of $m_a \approx 10^{-27} \text{eV}$

Cosmological axion for S_8 tension

• $S_8 \equiv \sqrt{\frac{\Omega_{0m}}{0.3}} \sigma_8$ where σ_8 is the standard deviation of matter density fluctuation around $8h^{-1}$ Mpc

- About 2σ discrepancy BOSS : $S_8 = 0.723^{+0.041}_{-0.037}$ Planck18 : $S_8 = 0.834 \pm 0.016$
- This tension is softened by introducing cosmological axion.

Axion mass is expected in the range of 10^{-27} eV $\leq m_a \leq 10^{-25}$ eV


Cosmological axion for cosmic birefringence

• Cosmic birefringence needs parity violating physics.

$$\mathcal{L}_{CS} = -\frac{1}{4}g\phi F\tilde{F}$$

Introduce axion photon coupling by Chern-Simons term

- Rotating angle is $\beta = \frac{g}{2} \Delta \phi$
- Observed value is $\beta = 0.35 \pm 0.14 \text{deg} (2\sigma)$

Komatsu (2022)

Axion mass is expected in the range of 10^{-38} eV $\leq m_a \leq 10^{-27}$ eV

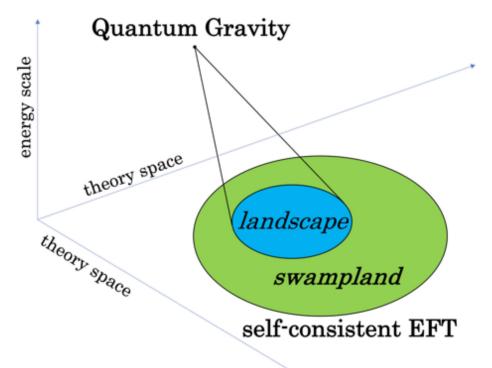
Is dark sector axion?

- Mass of fuzzy dark matter is restricted by Lyman α , subhalo mass function and heating. $m_a \gtrsim 10^{-19} \text{eV}$
- Mass of dark energy should be smaller than today's Hubble constant.

 $m_a \lesssim 10^{-33} \mathrm{eV}$

Axion mass for DE is expected in the range of $m_a \leq 10^{-33}$ eV Axion mass for DM is expected in the range of $m_a \gtrsim 10^{-19}$ eV

Summary of Cosmological axions


• To solve the tensions of Λ CDM by axions, multi-axions are needed.

More than there axions, or more if dark sectors are so.

• Are multi-axions allowed

Swampland program

- It aims to distinguish effective theory which is consistent with QG in UV region.
- It is possible to impose constraints on EFT.
- We use this method for cosmological axions.

Swampland conjecture

• de Sitter conjecture

A potential V for scalar field of any consistent theory of QG should satisfies

 $|\nabla V| \ge c \cdot V$

where *c* is a positive one order constant in the Planckian unit.

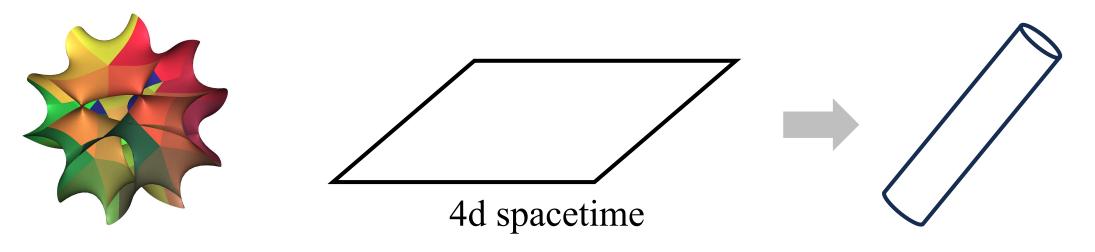
Swampland conjecture

• refined de Sitter conjecture

A potential V for scalar field of any consistent theory of QG should satisfies

 $|\nabla V| \ge c \cdot V$

or


$$\min(\nabla_i \nabla_j V) \le -c' \cdot V$$

where c, c' are positive one order constants in the Planckian unit.

Compactifying the SM

In the string theory, to obtain 4d Minkowski spacetime, higher dimensional spacetime is compactified to Calabi-Yau manifold.

Not to obtain lower dimensional theory, we consider the possibility of S¹ compactification of 4d SM.

Calculating vacuum energy

• Casimir energy contributes to vacuum energy.

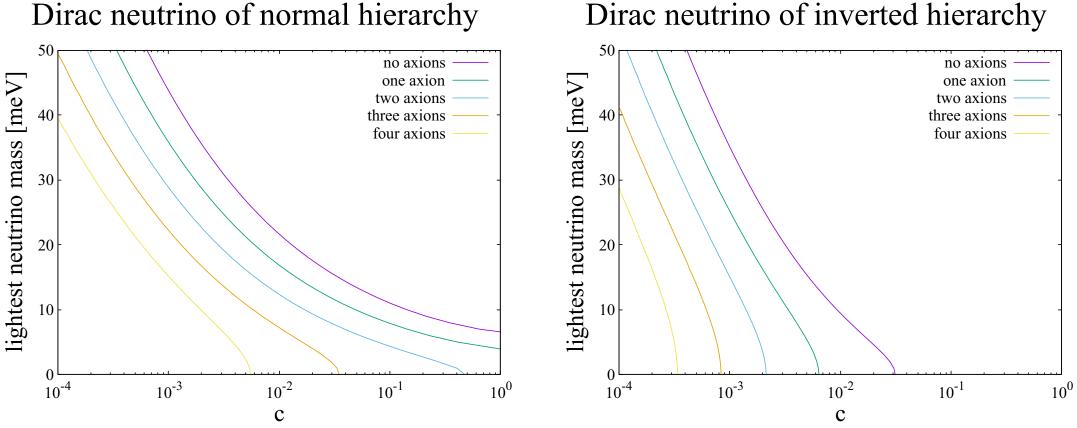
$$V_{Casimir} = \sum_{i}^{\infty} (-1)^{s_i} n_i \rho_i(R)$$
$$\rho_i(R) = \sum_{k=0}^{\infty} \frac{2m_i^4}{(2\pi)^2} \frac{K_2(2\pi Rm_i k)}{(2\pi Rm_i k)^2}$$
where *R* is size of compactified dimension.

• The potential of vacuum energy depends on the size of compactified dimension.

For light sectors

• Vacuum energy of massive sector decreases exponentially

$$ho(R) \propto e^{-2\pi m R}, R
ightarrow \infty$$


For this reason, light sectors determine the effective potential.→ photon, graviton, neutrino, axion

For neutrinos

- In the SM, some properties of neutrinos are not determined.
 - 1. type (Dirac or Majorana)
 - 2. hierarchy (Normal or Inverted)
 - 3. lightest neutrino mass

Analysis depends on these parameters.

Result

Dirac neutrino of inverted hierarchy

In the case of Dirac neutrino of normal hierarchy, up to two axions are allowed.

Summary

- ΛCDM has some tensions.
- Cosmological axions can help to solve them.
- Such multi-axion picture conflict with string theory.