Asymmetric Mediator in Scotogenic Model

Yokohama National University

SATO, Joe

Physics Letters B 836 13762 (2023)

ASAI Kento, SAKAI Yuhei, SJ, TAKANISHI Yasutaka, YAMANAKA Masato

1. Introduction -- Motivation

No, There is a relation !!!

Asymmetric Dark Matter (ADM)

Asymmetries are generated simultaneously

Same origin for DM and Baryon

1. Introduction – goal for the work

- Dark Matter
- Neutrino Oscillation
- Baryon Asymmetry
- $\Omega_{\rm DM} / \Omega_B \simeq 5$

Scotogenic Model E. Ma , Phys. Rev. D 73 (2006) 077301

> Leptogenesis M. Fukugita and T. Yanagida, Phys. Lett. B174 (1986)45-47

Asymmetric Dark Mater

David E. Kaplan, Markus A. Luty, and Kathryn M. Zurek, Phys. Rev. D.79. (2009) 115016

T. Hugle, M. Platscher, and K. Schmitz,

Phys. Rev. D 98 (2018) 023020

2. Our Model

Scotogenic Model E. Ma , Phys. Rev. D 73 (2006) 077301

Standard Model + N_i (i = 1, 2, 3) (RH neutrinos) + η (SU(2)_L doublet scalar)

• Symmetry

 $\mathrm{SU}(3)_{\mathcal{C}} \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y \times \mathbb{Z}_2$

 \mathbb{Z}_2 : Stability for DM σ Radiative v mass

	フェルミオン場			スカラー場		
場	L	e_R	N	H	η	σ
$\overline{\mathrm{SU}(2)_L}$	2	1	1	2	2	1
Z_2	+	+	_	+	_	_

Our Model

 σ is assumed to be a few GeV

• Lagrangian
$$\mathcal{L} \supset -h_{lpha i} ar{L}_{lpha} ilde{\eta} N_i + rac{1}{2} M_i$$

Yukawa

Majorana mass

$$V(H,\eta,\sigma) \supset \frac{\lambda_8}{2} \left[(H^{\dagger}\eta)^2 + h.c. \right] + \frac{\mu}{\sqrt{2}} \left[\sigma(H^{\dagger}\eta) + h.c. \right]$$

Radiative seesaw DM

2023, November 9

KEKPH2023 SATO Joe

2. Our Model

Z₂ forbid Dirac mass instead coupling with η $X : h_{\alpha i} \overline{L_{\alpha}} \widetilde{H} N_i \longrightarrow O : h_{\alpha i} \overline{L_{\alpha}} \widetilde{\eta} N_i$ Mass generation at1-loop

Radiative generation

Neutrino mass matrix

$$(\mathcal{M}_{\nu})_{\alpha\beta} \simeq \frac{\lambda_8 v^2}{32\pi^2} \sum_i \frac{h_{\alpha i}^* h_{\beta i}^*}{M_i} \begin{bmatrix} \ln \frac{M_i^2}{m_\eta^2} - 1 \end{bmatrix} \qquad \begin{array}{c} M_i \\ m_\eta \\ v \colon \end{array}$$

 M_i : RH neutrino mass m_η : SU(2)_L doublet mass v : Higgs VEV

λ_8 is key to generate neutrino mass

2. Our Model

Leptogenesis: Lepton Number creation with RH v Decay

3. How to "create" Dark Matter

Connecting Baryon # and DM # via $\Delta\eta$

Mass of $\sigma \sim$ GeV

3. How to "create" Dark Matter

What are important in our scenario

2023, November 9

KEKPH2023 SATO Joe

4. Condition for Baryon Number

Approcimation for B #

 $\eta_B \simeq -0.01 \epsilon_1 \kappa_1$

 ϵ_1 : asymmetry parameter κ_1 : efficiency factor

 ϵ_1 and κ_1 are calculated by Yukawa

Casas-Ibarra parametrization

$$h_{\alpha i} = \left(U D_{\nu}^{\frac{1}{2}} R^{\dagger} D_{\Lambda}^{\frac{1}{2}} \right)_{\alpha i} \quad (\mathcal{D}_{\Lambda})_{ii} = \frac{2\pi^2}{\lambda_8} \xi_i \frac{2M_i}{v^2}$$

$$\epsilon_1$$
 is given by $(r_{ij} = M_j/M_i, \eta_i = m_\eta/M_i)$
 $\epsilon_i = \frac{1}{8\pi} \frac{1}{(h^{\dagger}h)_{ii}} \sum_{j \neq i} \operatorname{Im} \left[\left\{ (h^{\dagger}h)_{ij} \right\}^2 \right] \frac{1}{\sqrt{r_{ji}}} F(r_{ji}, \eta_i)$

 κ_1 is given by

$$\kappa_1(K_1) \simeq \frac{1}{1.2K_1 \left[\ln K_1\right]^{0.8}}$$

$$K_1 = \frac{1}{8\pi} \sqrt{\frac{90}{8\pi^3 g_*}} \frac{M_{\rm Pl}}{M_1} \left(h^{\dagger} h\right)_{11} \left(1 - \eta_1\right)^2$$

if $K_1 > 1$, this is well satisfied

R complex orthogonal matrix

4. Condition for Baryon Number

 $(1) No \eta \eta \to HH$

$$<->\Gamma_{\eta\eta\to HH} < H(T=m_{\eta})$$

<-> $\lambda_8 < 3.9 imes 10^{-8} \sqrt{m_\eta/\text{GeV}}$

 λ_8 contributes neutrino masses

$$(\mathcal{M}_{\nu})_{\alpha\beta} \simeq \frac{\lambda_8 v^2}{32\pi^2} \sum_i \frac{h_{\alpha i}^* h_{\beta i}^*}{M_i} \left[\ln \frac{M_i^2}{m_\eta^2} - 1 \right]$$

Select parameters so that neutrino oscillation can be explained

Blue:
$$\eta_B$$

Black: $\eta_B^{obs} = 6.1 \times 10^{-10}$

4. Conditions for pair annihilation of η

 2η pair-annihilates sufficiently

 $Y^{\mathrm{f}}_{\eta} \ll Y_{\Delta\eta}$

Note $n_\eta < n_{\overline{\eta}}$

Estimate with following approximation

$$\boldsymbol{Y_{\eta}^{f}} \equiv \frac{\boldsymbol{n_{\eta}^{f}}}{\boldsymbol{s}} = 2 \times \frac{3.80 \, x_{f}}{\left(g_{*s}/g_{*}^{1/2}\right) M_{\mathrm{Pl}} m_{\eta} \left\langle \sigma_{\mathrm{g}} v_{\mathrm{rel}} \right\rangle}$$

$$x_{\rm f} \equiv \frac{m_{\eta}}{T_{\rm f}} = \ln \left[0.038 \left(g/g_*^{1/2} \right) M_{\rm Pl} m_{\eta} \left\langle \sigma_{\rm g} v_{\rm rel} \right\rangle \right] - \frac{1}{2} \ln \left\{ \ln \left[0.038 \left(g/g_*^{1/2} \right) M_{\rm Pl} m_{\eta} \left\langle \sigma_{\rm g} v_{\rm rel} \right\rangle \right] \right\}$$

4 . Condition for pair annihilation of η

4. Condition for asymmetric Dark Matter

(3)
$$\sigma$$
 is produced finally by decay of η

$$m_{f} > T > T_{BBN}$$

$$T_{f} > T > T_{BBN}$$

$$T_{f} : \text{freez-out of pair annih.}$$

$$T_{BBN} : \text{Big-bang Nuclepsynthesis}$$
As a whole

$$m_{\eta} \sim 10^{4} \text{GeV}, \quad \lambda_{8} < 10^{-8} \left(\frac{m_{\eta}}{\text{GeV}}\right)^{\frac{1}{2}}, \quad 10^{-11} \left(\frac{m_{\eta}}{\text{GeV}}\right)^{\frac{1}{2}} < \frac{\mu}{\text{Gev}} < 10^{-10} \left(\frac{m_{\eta}}{\text{GeV}}\right)^{\frac{3}{2}}$$

5. Summary

We study a Scotogenic Model with a real scalar

1 Decay of RH N_1 : Lepton # generation

(2) The mediator η pair-annihilate with keeping asymmetry $n_{\Delta\eta}$

(3) DM σ is produced by η decay

Summay

Dark Matter Neutrino Oscillation

Baryon Asymmetry Asymmetric DM condition $\Omega_{\rm DM}$ / $\Omega_B \simeq 5$

can be simultaneously explained in one framework !