New theoretical constraint on the non-decoupling physics with the mass dependent beta function

Yushi Mura (Osaka U.)

Collaborator: Prof. Shinya Kanemura (Osaka U.)

arXiv:2310:15622 [hep-ph]

KEK-ph 2023 at Tsukuba 2023/11/08

In 2012, the discovery of the Higgs particle (125 GeV)

The Standard Model (SM) well explains particle phenomenology.

However, the Higgs sector is unknown

ATLAS, Nature (2022); CMS, CMS-PAS-HIG-19-005 (2020)

Property of the electroweak phase transition in the early universe?

Remaining questions

Dark matter, Neutrino mass, Baryon asymmetry of the Universe, etc.

Those can be explained by the extension of the Higgs sector

Ex)Weakly interacting massive particlesSteigman and Turner (1985)Tree or radiative seesawT. Yanagida (1979); Zee (1980); and moreElectroweak baryogenesis (EWBG)Kuzmin, Rubakov and Shaposhnikov (1985)

EWBG and non-decoupling effects

The Landau pole

Relatively large scalar couplings for EWBG

- From RGE analysis, the Landau pole appears typically at 1-100TeV
- Theoretical constraints on the models for EWBG
- Threshold correction Weinberg (1980)
 - Mass independent beta function ($\overline{\text{MS}}$ scheme)
 - Matching the low energy effective theory (SM) and the UV theory (new physics)

 $\beta(\lambda, Q) = \beta_{\rm IR}(\lambda) + \theta_{\rm step}(Q/Q_m) \beta_{\rm UV}(\lambda)$

In this talk

- Natural treatment for running couplings
- Precise evaluation of the Landau pole

Q: Energy scale Q_m : Matching scale

For the situation that $m_{\Phi}^2 = M^2 + \tilde{\lambda} v^2 \simeq \tilde{\lambda} v^2$

Mass dependent beta function

• $\lambda \phi^4$ theory $\mathcal{L} = (\partial_\mu \phi)^2 - m^2 \phi^2 - \frac{\lambda}{4!} \phi^4$

On-shell mass:

$$\Gamma^{(2)}(k^2 = m^2, m^2, \lambda) = 0,$$

Wave function:

$$\frac{\partial}{\partial k^2} \Gamma^{(2)}(k^2, m^2, \lambda)|_{k^2 = -Q^2} = 0,$$

Momentum subtraction:

$$(k_i, m^2, \lambda)|_{k_i \cdot k_j = -Q^2 \delta_{ij} + \frac{1}{3}Q^2(1 - \delta_{ij})} = -\lambda$$

Mass dependent beta function (1 loop level)

 $\Gamma^{(4)}$

Application for non-decoupling case

Toy model for the non-decoupling situation

U(1) symmetry for
$$\phi_1, \phi_2$$

 $\phi_{1,2} \rightarrow \phi_{1,2} \ e^{i\theta_{1,2}}$

$$\mathcal{L} = (\partial_{\mu}\phi_{1})^{\dagger} (\partial_{\mu}\phi_{1}) + (\partial_{\mu}\phi_{2})^{\dagger} (\partial_{\mu}\phi_{2}) - \mu_{1}^{2} |\phi_{1}|^{2} - \mu_{2}^{2} |\phi_{2}|^{2} - \frac{\lambda_{1}}{2} |\phi_{1}|^{4} - \frac{\lambda_{2}}{2} |\phi_{2}|^{4} - \lambda_{3} |\phi_{1}|^{2} |\phi_{2}|^{2} .$$

• $\mu_1^2 < 0 \Rightarrow$ SSB of U(1) symmetry for ϕ_1 $\phi_1 = (v + \rho + i\eta)/\sqrt{2}$

Mass spectrum $m_{\rho}^2 = \lambda_1 v^2$, $m_n^2 = 0$, ρ : SM like Higgs field $m_{\phi_2}^2 = \mu_2^2 + \frac{1}{2}\lambda_3 v^2$,

$$\phi_2$$
 : Additional scalar field

 $m_{\phi_2}^2 \simeq \mu_2^2 \qquad \Rightarrow \phi_2$ can decouple $m_{\phi_2}^2 \simeq \frac{1}{2} \lambda_3 v^2 \Rightarrow \phi_2$ is fixed at EW scale (Non-decoupling)

Application for non-decoupling case

Seven renormalization conditions

- On-shell condition for $m_{\rho}, m_{\eta}, m_{\phi_2}$
- Two wave function renormalization
- Two momentum subtraction $\Gamma^{(4)}_{\rho\rho\phi_2\phi_2^{\dagger}}|_{k=\text{symmetric}} = -\lambda_3$, $\Gamma^{(4)}_{\phi_2\phi_2^{\dagger}\phi_2\phi_2^{\dagger}}|_{k=\text{symmetric}} = -2\lambda_2$.
- Beta function for non-decoupling parameter λ_3 (1 loop level)

$$16\pi^2 \beta_{\lambda_3} \simeq \lambda_1 \lambda_3 + 3\lambda_1 \lambda_3 f(Q/m_\rho) + 4\lambda_3^2 f(Q/m_{\phi_2}) + 4\lambda_2 \lambda_3 f(Q/m_{\phi_2})$$

- For $Q/m \rightarrow \infty$, they coincide with the ones of the \overline{MS} scheme
- Calculate running couplings

- Inputs $(v, m_{\rho}, m_{\phi_2}) = (246, 125, 400) \text{ GeV}$ $\lambda_3(Q_0) = 5.3, \lambda_2(Q_0) = 0.01,$
- Mass dependent (solid) and mass independent (dashed)

• Similarity to running with threshold correction at Q = 10m (dotdash)

Application to extended Higgs models

• Inert doublet model $V = \mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 + \frac{\lambda_1}{2} |\Phi_1^{\dagger} \Phi_1|^2 + \frac{\lambda_2}{2} |\Phi_2^{\dagger} \Phi_2|^2 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \lambda_5 \operatorname{Re}(\Phi_1^{\dagger} \Phi_2)^2$

Unbroken Z_2 symmetry $\begin{array}{c} \Phi_1 \rightarrow \Phi_1 \\ \Phi_2 \rightarrow -\Phi_2 \end{array}$ $\Phi_1 = \begin{pmatrix} G^{\pm} \\ \frac{1}{\sqrt{2}}(v+h+iG^0) \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} H^{\pm} \\ \frac{1}{\sqrt{2}}(H+iA) \end{pmatrix}$ • Mass spectrum

$$m_h^2 = \lambda_1 v^2, \quad m_{H^{\pm}}^2 = \mu_2^2 + \frac{1}{2} \lambda_3 v^2, \quad m_H^2 = m_{H^{\pm}}^2 + \frac{1}{2} (\lambda_4 + \lambda_5) v^2, \quad m_A^2 = m_{H^{\pm}}^2 + \frac{1}{2} (\lambda_4 - \lambda_5) v^2.$$

Renormalization condition

On-shell for mass parameters (scalar, fermion and gauge fields) + Wave function for Φ_1 and Φ_2 + Momentum subtraction for λ_2 and λ_3 .

Gauge dependence ⇒ background field method

DeWitt (1967); Abbott (1981); Denner et. al. (1995)

For vertex functions

Mathematica packages FeynCalc, FeynArts, FeynRules, LoopTools, FeynHelpers

Mertig, Bohm and Denner (1991); Kublbeck, Bohm and Denner (1990); Christensen and Duhr (2009); Hahn (2000); Shtabovenko (2017) Degenerated mass of additional scalars

$$m_{\Phi}^{2} \equiv m_{H^{\pm}}^{2} = m_{H}^{2} = m_{A}^{2}$$
$$= \mu_{2}^{2} + \frac{1}{2}\lambda_{3}v^{2}$$

- Triviality bound: Upper bound on m_{Φ} for fixed $\Lambda_{4\pi}$
- Scheme difference prominently appears in the non-decoupling case

Degenerated mass of additional scalars

$$m_{\Phi}^{2} \equiv m_{H^{\pm}}^{2} = m_{H}^{2} = m_{A}^{2}$$
$$= \mu_{2}^{2} + \frac{1}{2}\lambda_{3}v^{2}$$

- Triviality bound: Upper bound on m_{Φ} for fixed $\Lambda_{4\pi}$
- Scheme difference prominently appears in the non-decoupling case

Degenerated mass of additional scalars

$$m_{\Phi}^2 \equiv m_{H^{\pm}}^2 = m_H^2 = m_A^2$$

= $\mu_2^2 + \frac{1}{2}\lambda_3 v^2$

- Triviality bound: Upper bound on m_{Φ} for fixed $\Lambda_{4\pi}$
- Scheme difference prominently appears in the non-decoupling case

Summary

Electroweak baryogenesis and Landau pole

- Relatively large scalar coupling for EWBG (non-decoupling situation)
- Landau pole appears at relatively low scale (1-100TeV)
- Arbitrariness in threshold correction

Mass dependent beta function

- Decoupling mechanism for effects of heavy particles
- Due to the running delay, Landau pole goes far away

Triviality bound

- Consider inert doublet model
- Upper bound on the mass for fixed cutoff scale (triviality bound)
- Triviality bound for EWBG is more relaxed than that has been evaluated

Back up

Loop functions

- Only the divergent diagrams are relevant for the beta function
- Derivative of the Passarino-Veltman functions respect with the scale

Passarino and Veltman (1979)

Analytical formulae of beta functions

• Toy model

$$16\pi^{2} \beta_{\lambda_{3}} = \lambda_{1}\lambda_{3} + 3\lambda_{1}\lambda_{3} f^{Q}_{m_{\rho},m_{\rho}} + 4\lambda_{3}^{2} f^{Q}_{m_{\rho},m_{\phi_{2}}} + 4\lambda_{2}\lambda_{3} f^{Q}_{m_{\phi_{2}}m_{\phi_{2}}} + D_{Q}(DB_{0}, C_{0}, D_{0} \text{ terms})$$

 $16\pi^2 \beta_{\lambda_2} = \lambda_3^2 + \lambda_3^2 f_{m_\rho,m_\rho}^Q + 10\lambda_2^2 f_{m_{\phi_2},m_{\phi_2}}^Q + D_Q(DB_0, C_0, D_0 \text{ terms})$

$$f_{m,m}^{Q} \equiv -\frac{1}{2} D_{Q} B_{0} \left(-\frac{3}{4} Q^{2}, m^{2}, m^{2} \right)$$

• β_{λ_1} is zero for $Q/m \to \infty$, because of on-shell condition for m_{ρ} and m_{η} .

- But $\Gamma_{\rho\rho\rho\rho}^{(4)}$, which is relevant to λ_1 , has scale dependence at the one loop level.
- Such corrections are $O\left(\frac{\lambda}{16\pi^2}\log(Q^2/m^2)\right)$.

Beta function with threshold correction

• Toy model

$$16\pi^{2} \beta_{\lambda_{1}} = 10\lambda_{1}^{2} + 2\lambda_{3}^{2} \theta^{n} (Q/m_{\phi_{2}})$$

$$16\pi^{2} \beta_{\lambda_{2}} = 10\lambda_{2}^{2} \theta^{n} (Q/m_{\phi_{2}}) + 2\lambda_{3}^{2}$$

$$\theta^{n} (Q/m_{\phi_{2}}) \equiv \begin{cases} 1 & (Q \ge n m_{\phi_{2}}) \\ 0 & (Q < n m_{\phi_{2}}) \end{cases}$$

$$16\pi^2 \beta_{\lambda_3} = 4\lambda_1\lambda_3 + 4(\lambda_2\lambda_3 + \lambda_3^2) \theta^n(Q/m_{\phi_2})$$

- Thresholds are included for the diagrams involved by the heavy particle ϕ_2 .
- Appropriate value of *n* depends on the input parameters.

