Recent news on the $\mathcal{R}(D^{(*)})$ anomaly

Monika Blanke

Collaborative Research Center TRR 257

KEK Theory Meeting on Particle Physics Phenomenology (KEK-PH2023) KEK Tsukuba – November 7, 2023

New Physics, where are you?

Despite compelling arguments for New Physics (NP) at the TeV scale, and despite more than a decade of very successful LHC operations, we still lack a discovery of new particles beyond the Standard Model (SM)!

Where should we be looking?

New Physics, where are you?

Despite compelling arguments for New Physics (NP) at the TeV scale, and despite more than a decade of very successful LHC operations, we still lack a discovery of new particles beyond the Standard Model (SM)!

Where should we be looking?

- observables with strong NP sensitivity
- clean theory prediction
- accessible to current experiments

indirect NP searches in **precision observables** testing the SM **flavour sector**

Why lepton flavour universality tests?

Quark flavour violation

- present in the SM, but suppressed by small CKM mixing
- subject to non-perturbative uncertainties due to QCD confinement

Lepton flavour violation

- theoretically much cleaner, QCD effects often absent
- conserved in the SM, hence no interference with NP

Why lepton flavour universality tests?

Quark flavour violation

- present in the SM, but suppressed by small CKM mixing
- subject to non-perturbative uncertainties due to QCD confinement

Lepton flavour violation

- theoretically much cleaner, QCD effects often absent
- conserved in the SM, hence no interference with NP

Lepton flavour universality in quark flavour-violating decays

- theoretically clean, as hadronic uncertainties mostly cancel
- sizeable NP effects possible due to interference with SM

The $\mathcal{R}(D^{(*)})$ anomaly

Test of lepton flavour universality in semi-leptonic B decays

$$\mathcal{R}(D^{(*)}) = \frac{\mathsf{BR}(B \to D^{(*)}\tau\nu)}{\mathsf{BR}(B \to D^{(*)}\ell\nu)} \qquad (\ell = e, \mu)$$

- theoretically clean, as hadronic and $\left|V_{cb}\right|$ uncertainties largely cancel in ratio
- measurements by BaBar, Belle, and LHCb in decent agreement with each other
- LHCb found $\mathcal{R}(J/\psi)$ to be larger than expected in SM
- > persisting 3.3σ anomaly over-abundance of τ leptons

Effective Hamiltonian for b ightarrow c au u

New Physics (NP) above B meson scale described model-independently¹ by

$$\mathcal{H}_{\text{eff}} = 2\sqrt{2}G_F V_{cb} \Big[(1 + \boldsymbol{C}_{V_L}^{\tau}) \boldsymbol{O}_{V_L}^{\tau} + \boldsymbol{C}_{S_R}^{\tau} \boldsymbol{O}_{S_R}^{\tau} + \boldsymbol{C}_{S_L}^{\tau} \boldsymbol{O}_{S_L}^{\tau} + \boldsymbol{C}_T^{\tau} \boldsymbol{O}_T^{\tau} \Big]$$

with the vector, scalar and tensor operators

$$O_{V_L}^{\tau} = (\bar{c}\gamma^{\mu}P_Lb) (\bar{\tau}\gamma_{\mu}P_L\nu_{\tau})$$

$$O_{S_R}^{\tau} = (\bar{c}P_Rb) (\bar{\tau}P_L\nu_{\tau})$$

$$O_{S_L}^{\tau} = (\bar{c}P_Lb) (\bar{\tau}P_L\nu_{\tau})$$

$$O_T^{\tau} = (\bar{c}\sigma^{\mu\nu}P_Lb) (\bar{\tau}\sigma_{\mu\nu}P_L\nu_{\tau})$$

$$B_{T}$$

¹assuming heavy/no ν_R and NP only in au channel

Possible single-particle explanations

Possiblle New Physics scenarios (tree level!)

 $C_{V_I}^{ au}$ vector $SU(2)_L$ -triplet W' boson \succ disfavoured by EW precision tests & LHC searches XFAROUGHY, GRELJO, KAMENIK (2016); FERRUGLIO, PARADISI, PATTORI (2017) charged Higgs boson H^{\pm} $(C_{S_P}^{\tau}, C_{S_T}^{\tau})$ $SU(2)_L$ -singlet vector leptoquark U_1 $(C_{V_T}^{\tau}, C_{S_T}^{\tau})$ $SU(2)_L$ -singlet scalar leptoquark S_1 $(C_{V_T}^{\tau}, C_{S_T}^{\tau} = -4C_T^{\tau})$ $(\operatorname{Re}[C_{S_{\tau}}^{\tau}=4C_{T}^{\tau}],$ scalar $SU(2)_L$ -doublet leptoquark S_2 with CP-violating couplings $\operatorname{Im}[C_{S_{\tau}}^{\tau} = 4C_{T}^{\tau}])$ see e. g. MB, CRIVELLIN, DE BOER, KITAHARA, MOSCATI, NIERSTE, NIŠANDŽIĆ (2018)

Beyond decay rates: $F_L^{ au}(D^*)$

Belle 2018: first measurement of longitudinal D^* polarisation in $B \to D^* \tau \nu$

 $F_L^{\tau}(D^*) = 0.60 \pm 0.08 \pm 0.04$

 $\sim 1.7\sigma$ above SM expectation

Beyond decay rates: $F_L^{ au}(D^*)$

Belle 2018: first measurement of longitudinal D^* polarisation in $B \rightarrow D^* \tau \nu$

 $F_L^{\tau}(D^*) = 0.60 \pm 0.08 \pm 0.04$

 $\sim 1.7\sigma$ above SM expectation

Consequences for NP scenarios

- SM-like NP $(C_{V_L}^{\tau})$ does not affect polarisation observables
- charged Higgs can lift $F_L^{\tau}(D^*)$ into exp. 1σ range \checkmark
- leptoquark models have minor impact on $F_L^{\tau}(D^*)$
- tensor contribution C_T^{τ} leads to $F_L^{\tau}(D^*)$ suppression \mathbf{X}

Status of the $B_c ightarrow au u$ bound

Charged-Higgs enhancement of $\mathcal{R}(D^*)$ correlates with large NP effects in $B_c \to \tau \nu$

• 2016: measured $\mathcal{R}(D^*)$ implied $BR(B_c \to \tau \nu) \sim 50\%$ in conflict with bound $BR(B_c \to \tau \nu) < 30\%$ derived from B_c lifetime

ALONSO, GRINSTEIN, MARTIN CAMALICH (2016); based on BENEKE, BUCHALLA (1996)

Status of the $B_c ightarrow au u$ bound

Charged-Higgs enhancement of $\mathcal{R}(D^*)$ correlates with large NP effects in $B_c \to \tau \nu$

• **2016**: measured $\mathcal{R}(D^*)$ implied $\mathsf{BR}(B_c \to \tau \nu) \sim 50\%$ in conflict with bound $\mathsf{BR}(B_c \to \tau \nu) < 30\%$ derived from B_c lifetime

ALONSO, GRINSTEIN, MARTIN CAMALICH (2016); based on BENEKE, BUCHALLA (1996)

- 2018: caveats of τ_{B_c} calculation pointed out which relaxed constraint to BR $(B_c \rightarrow \tau \nu) < 60\%$ MB, CRIVELLIN, DE BOER, KITAHARA, MOSCATI, NIERSTE, NIŠANDŽIĆ (2018) confirmed by reassessment of τ_{B_c} theory prediction AEBISCHER, GRINSTEIN (2021)
- present: recent LHCb and Belle data show reduced anomaly in R(D*)
 > BR(B_c → τν) safely small ✓ Iguro (2022)
- future: FCC-ee can place stringent direct limit on $B_c \rightarrow \tau \nu$ and test charged-Higgs effects in $\mathcal{R}(D^*)$ Fedele, Helsens, Hill, Iguro, Klute, Zuo (2023)

Complementary LHC searches

- crossing symmetry relates $b \to c \tau \nu$ to $pp \to X \tau \nu$

> EFT analysis: LHC has become competitive in testing NP behind anomaly GRELJO, MARTIN CAMALICH, RUIZ-ALVAREZ (2018)

Complementary LHC searches

- crossing symmetry relates $b \to c \tau \nu$ to $pp \to X \tau \nu$

EFT analysis: LHC has become competitive in testing NP behind anomaly GRELJO, MARTIN CAMALICH, RUIZ-ALVAREZ (2018)

Charged Higgs in mono-au final state

- charged Higgs produced as s-channel resonance
 - ➤ significant deviation from EFT analysis
- mass-dependent constraint from recasting $W' \rightarrow \tau \nu$ searches

> charged Higgs solution to $\mathcal{R}(D^{(*)})$ ruled out for $m_{H^-} > 400 \,\text{GeV}$

Iguro, Omura, Takeuchi (2018)

What about a light charged Higgs?

- light charged Higgs ($m_{H^-} < 400 \,\text{GeV}$) not excluded by mono- τ data due to huge $W \to \tau \nu$ background
- efficient background suppression by requiring additional *b*-tagged jet

> Is this sufficient to exclude the charged Higgs solution to the $\mathcal{R}(D^{(*)})$ anomaly? MB, Iguro, Zhang (2022 $\mathcal{R}(D^{(*)})$ Charged Higgs solution

Reach of the $b\tau\nu$ signature

Minimal coupling scenarioMB, IGURO, ZHANG (2022) $(C_{S_L}^{\tau})$ only, additional couplings do not alter conclusions)

$$\mathcal{L}_{\text{int}} = +y_Q H^-(\bar{b}P_R c) - y_\tau H^-(\bar{\tau}P_L \nu_\tau)$$

 \succ H^- close to top threshold most difficult to test

 relevant constraints from SUSY stau and (flavoured) dijet searches at the LHC IGURO (2022)

Reach of the $b\tau\nu$ signature

Minimal coupling scenarioMB, IGURO, ZHANG (2022) $(C_{S_L}^{\tau})$ only, additional couplings do not alter conclusions)

$$\mathcal{L}_{\text{int}} = +y_Q H^-(\bar{b}P_R c) - y_\tau H^-(\bar{\tau}P_L \nu_\tau)$$

- \succ H^- close to top threshold most difficult to test
- relevant constraints from SUSY stau and (flavoured) dijet searches at the LHC IGURO (2022)
- performing (flavoured) dijet and proposed bτν search with Run 2 data would almost exclude charged Higgs solution for R(D^(*))

final verdict from future LHC runs

Lepton flavour universality in baryonic decays

NP in $b \to c \tau \nu$ can also be tested in baryonic decays

$$\mathcal{R}(\Lambda_c) = \frac{\mathsf{BR}(\Lambda_b \to \Lambda_c \tau \nu)}{\mathsf{BR}(\Lambda_b \to \Lambda_c \ell \nu)}$$

LHCb 2022: $\mathcal{R}(\Lambda_c^+) = 0.242 \pm 0.026 \pm 0.040 \pm 0.059$

compare to SM prediction:

 $\mathcal{R}(\Lambda_c)_{\mathsf{SM}} = 0.324 \pm 0.004$

> hints at under-abundance of τ leptons, although not yet conclusive > consistent NP explanation of $\mathcal{R}(D^{(*)})$ and $\mathcal{R}(\Lambda_c)$?

The $\mathcal{R}(\Lambda_c)$ sum rule

Approximate sum rule relating $\mathcal{R}(D^{(*)})$ and $\mathcal{R}(\Lambda_c)$

 $\begin{array}{c} {\rm MB,\ Crivellin\ et\ al.\ (2018),\ (2019)} \\ {\rm Fedele,\ MB\ et\ al.\ (2022)} \end{array}$

$$\frac{\mathcal{R}(\Lambda_c)}{\mathcal{R}_{\rm SM}(\Lambda_c)} \simeq 0.280 \frac{\mathcal{R}(D)}{\mathcal{R}_{\rm SM}(D)} + 0.720 \frac{\mathcal{R}(D^*)}{\mathcal{R}_{\rm SM}(D^*)}$$

- enhancement of $\mathcal{R}(D^{(*)})$ implies $\mathcal{R}(\Lambda_c) > \mathcal{R}_{\mathrm{SM}}(\Lambda_c) = 0.324 \pm 0.004$
- consistent with expectation from heavy-quark symmetry
- model-independent holds for any NP in τ lepton channel

The $\mathcal{R}(\Lambda_c)$ sum rule

Approximate sum rule relating $\mathcal{R}(D^{(*)})$ and $\mathcal{R}(\Lambda_c)$

MB, CRIVELLIN ET AL. (2018), (2019) FEDELE, MB ET AL. (2022)

$$\frac{\mathcal{R}(\Lambda_c)}{\mathcal{R}_{\rm SM}(\Lambda_c)} \simeq 0.280 \frac{\mathcal{R}(D)}{\mathcal{R}_{\rm SM}(D)} + 0.720 \frac{\mathcal{R}(D^*)}{\mathcal{R}_{\rm SM}(D^*)}$$

• enhancement of $\mathcal{R}(D^{(*)})$ implies $\mathcal{R}(\Lambda_c) > \mathcal{R}_{\mathrm{SM}}(\Lambda_c) = 0.324 \pm 0.004$

- consistent with expectation from heavy-quark symmetry
- model-independent holds for any NP in τ lepton channel

Model-independent prediction:

$$\mathcal{R}(\Lambda_c) \simeq 0.380 \pm 0.012_{\mathcal{R}(D^{(*)})} \pm 0.005_{\text{form factors}}$$

 $\sim 2\sigma$ tension with LHCb measurement

Including NP in the light lepton modes

Step 1: check all possible two-particle scenarios (one coupling to τ , one to $\ell = e, \mu$)

• identified two scenarios capable of reproducing $\mathcal{R}(D)$, $\mathcal{R}(D^{(*)})$ and $\mathcal{R}(\Lambda_c)$:

$$S_1^{\ell} \& S_2^{\tau} \qquad S_1^{\ell} \& H^{\pm \tau}$$

• for both cases: $C_{V_L}^{\ell} \simeq -1$ (dest. interference with SM), $C_{S_L}^{\ell} = -8.9C_T^{\ell} \simeq \pm 1$ > strongly incompatible with bounds from high- p_T observables, $B \to D^* \ell \nu$ angular distribution & polarisation observables, $B \to K^* \nu \bar{\nu}$, $|V_{cb}|$ fits

Including NP in the light lepton modes

Step 1: check all possible two-particle scenarios (one coupling to τ , one to $\ell = e, \mu$)

• identified two scenarios capable of reproducing $\mathcal{R}(D)$, $\mathcal{R}(D^{(*)})$ and $\mathcal{R}(\Lambda_c)$:

$$S_1^{\ell} \& S_2^{\tau} \qquad S_1^{\ell} \& H^{\pm \tau}$$

- for both cases: $C_{V_L}^{\ell} \simeq -1$ (dest. interference with SM), $C_{S_L}^{\ell} = -8.9C_T^{\ell} \simeq \pm 1$ > strongly incompatible with bounds from high- p_T observables, $B \to D^* \ell \nu$ angular distribution & polarisation observables, $B \to K^* \nu \bar{\nu}$, $|V_{cb}|$ fits
- **Step 2:** general 8dim NP fit including $C_{V_L}^{\tau}, C_{S_L}^{\tau}, C_{S_R}^{\tau}, C_T^{\tau}, C_{V_L}^{\ell}, C_{S_L}^{\ell}, C_S^{\ell}, C_T^{\ell}$
 - viable fit to LFU ratios requires $C_{V_L}^\ell\simeq -1,~C_T^\ell\simeq \pm 0.1$
 - again excluded by high- p_T searches, $B \to D^* \ell \nu$ angular distribution & polarisation observables, $B \to K^* \nu \bar{\nu}$, $|V_{cb}|$ fits X

FEDELE, MB, CRIVELLIN, IGURO, KITAHARA, NIERSTE, WATANABE (2022)

What about hadronic uncertainties?

"Naive" factorisation

- separation of scales in (RG-improved) theory
- $\bullet\,$ factorisation of $B\to D^{(*)}\ell\nu$ decay rates into
 - perturbative weak interactions (+NP) contained in Wilson coefficients C_i
 - kinematical factors from phase-space intergral
 - non-perturbative strong interactions described by $\langle D^{(*)}|\mathcal{O}_i|B\rangle$ form factors
 - \succ major source of uncertainties

What about hadronic uncertainties?

"Naive" factorisation

- separation of scales in (RG-improved) theory
- $\bullet\,$ factorisation of $B\to D^{(*)}\ell\nu$ decay rates into
 - perturbative weak interactions (+NP) contained in Wilson coefficients C_i
 - kinematical factors from phase-space intergral
 - non-perturbative strong interactions described by $\langle D^{(*)}|\mathcal{O}_i|B\rangle$ form factors
 - ➤ major source of uncertainties

Since form factors are independent of lepton flavour, the ratios $\mathcal{R}(D^{(*)})$ are **much less sensitive** to their uncertainties than the individual decay rates!

The issue with form factors

Finite τ lepton mass implies residual form factor dependence in LFU ratios $\mathcal{R}(D^{(*)})$

Form factor determinations

- Iguro/Watanabe: based on improved HQET
- Bigi/Gambino/Jung/Schacht: based on improved BGL
- Fermilab/MILC: lattice + unitarity
- Dispersive Matrix: Fermilab/MILC + kinematic constraints MARTINELLI, NAVIGLIO, SIMULA, VITTORIO (2021)
- and others: HPQCD, JLQCD

> DM form factors significantly ameliorate tension in LFU ratios (and incl./excl. $|V_{cb}|$)

DM form factors: all $b ightarrow c \ell \nu$ anomalies gone?

DM method constrains shape of form factors \succ implies decreased $\mathcal{F}_1(w)$ at large recoil

General pattern

decreased form factor $\mathcal{F}_1(w)$ implies

- decrease in $d\Gamma^\ell/dw$ for $\ell=e,\mu$
 - \succ larger extracted $|V_{cb}|$
 - \succ increased $\mathcal{R}(D^*)$
- \bullet increase in forward-backward asymmetry $A_{\rm FB}^\ell$ ${\rm x}$
- decrease in longitudinal D^* polarisation F_L^ℓ

Once again: New Physics in the light lepton modes?

Can New Physics in the light lepton modes address this emerging tension in F_L^{ℓ} ?

- <u>known from τ mode</u>: significant deviations from SM require large contributions from scalar and/or tensor operators $C_{S_{L,R}}^{\ell}$, C_{T}^{ℓ} see e.g. Colangelo, de Fazio (2018)
- their interference with the SM contribution is proportional to the lepton mass m_ℓ and therefore strongly suppressed for light leptons

Once again: New Physics in the light lepton modes?

Can New Physics in the light lepton modes address this emerging tension in F_L^{ℓ} ?

- <u>known from τ mode</u>: significant deviations from SM require large contributions from scalar and/or tensor operators $C_{S_{L,R}}^{\ell}$, C_{T}^{ℓ} see e.g. Colangelo, de Fazio (2018)
- their interference with the SM contribution is proportional to the lepton mass m_ℓ and therefore strongly suppressed for light leptons

Longitudinal D^* polarisation F_L^ℓ with $\ell=e,\mu$

- \succ is insensitive to New Physics X
- > can be used to test form factor predictions against data: emerging tension in F_L^{μ} hints at issue with DM form factors (or lattice input used)

Fedele, MB, Crivellin, Iguro, Nierste, Simula, Vittorio (2023)

Summary & outlook

- $\mathcal{R}(D^{(*)})$ anomaly persists at the 3σ level
 - status of NP analysis
 - charged Higgs solution preferred
 - testable at the (HL-)LHC
 - challenged by baryonic decay data
 - sum rule: $\mathcal{R}(\Lambda_c)$ result inconsistent with $\mathcal{R}(D^{(*)})$
 - cannot be resolved by New Physics
 - subject to form factor uncertainties: DM form factors
 - ameliorate $\mathcal{R}(D^{(*)})$ anomaly
 - create tension in F_L^ℓ : insensitive to NP, useful as experimental test of form factor calculations