

CBETA: Achievements, Challenges, and Plans

J. Scott Berg, Brookhaven National Laboratory for the CBETA Collaboration ERL 2024

September 24, 2024

Outline

- Machine description
- Achievements
- Challenges
- Future possibilities

Machine Description

CBETA: Description

- 4-Pass ERL accelerating electrons to 150 MeV
 - Can be configured for any number of passes
- 1.3 GHz SRF injector, capable of 0.5 MW
- 6-cavity 1.3 GHz SRF linac, designed for ERL operations
- Fixed field alternating gradient (FFA) return arc
 - Single arc transmits energies from 42 to 150 MeV
 - Uses permanent magnets with windowframe correctors
- Splitter/recombiner lines between linac and return arc to control
 - Time of flight and R₅₆
 - Betatron matching

Machine Sections

- BEA keturle catron
- Splitter and
- hejeontobilineac to 6014/2014
- Main linac, accelerating by 36 MeV
- Beam stop

Main Linac

- Six 7-cell 1.3 GHz cavities
- Two cavity designs: with and without stiffener rings
- 5 kW or 10 kW power amplifiers
- Reduction of detuning
 - Mitigation of vibration sources
 - Active noise control

FFA Return Arc

- Alternating focusing quadrupoles and combined-function defocusing quadrupoles
- Halbach-style permanent magnets
- Four types of defocusing magnets depending on local radius of curvature
 - Shift magnets for fine control of dipole component

FFA Return Arc: Magnets

- Magnets individually measured and corrected
 - Measure magnet field
 - Insert iron wires near inside aperture to correct fields
 - Repeat if needed
- Field errors corrected to about 2 units

Splitter/Recombiner Lines

- Individual electromagnet lines needed to
 - Match beta functions from linac to FFA arc
 - Control time of flight and R₅₆
- Sliding joints (bellows) to adjust time of flight

(m⁻¹)

_× 100

CBETA: Achievements

1-Pass: Measurement of Energy Recovery

- Beam injected at 6 MeV, accelerated to 42 MeV, decelerated to 6 MeV
- Reached nearly 70 µA current
 - Likely could have reached 1 mA, but fast shutdown system was not operational and beam dump entrance was not fully shielded

1-Pass: Measurement of Energy Recovery

- Measured energy balance at each cavity
- First, for calibration: beam through linac to dump, 3 cavities accelerating, 3 decelerating
- Then 1 turn ERL mode
- Efficiencies measured, accounting for beam loss
- Note trend: machine not tuned for perfect balance at each cavity due to RF stability issues

0		
Cavity	Efficiency (%)	0 2 4
1	99.99 ± 0.42	0
2	99.91 ± 0.19	
3	99.86 ± 0.12	
4	99.81 ± 0.15	² ² - 4 -
5	100.04 ± 0.11	-6 -
6	100.48 ± 0.23	0 2 4 $I_{h}(\mu A)$

₂ (W)

4-Pass ERL Operation

- 4 accelerating, 4 decelerating passes
- Simultaneous correction of all orbits in the common return arc
- Low current (5 pC/1 nA) operation
- Good agreement between model and measurements
 - FFA return arc tunes over the entire energy range
 - Linac phases

CBETA: Challenges

RF Stability

High phase and voltage fluctuations

- Improved as we got better control of noise
- Sometimes prevented reaching desired voltage, operating off-crest
- Long term drift i
 - Two different vc 100
 - Attempted to cc

Splitter Lines

- Splitter lines very close to each other
- Fields controlling one line impact the adjacent line(s), making correction and matching challenging
- Made first attempts at knobs controlling a group of magnets simultaneously
- In addition, see hysteresis effects
- Unable to steer beam through quadrupole centers
- Binding in sliding joints

4-Pass Losses

- Significant beam loss between last two return passes in the 78 MeV recombiner line
- Slower losses before that

Microbunching and Halo

- Evidence of microbunching at higher charges
 - Pictures at entrance to S2
- Halo observed in injector
 - Likely from photocathode
 - Selectively activated photocathode has been used in the past

CBETA: Future Possibilities

Future Possibilities

• CBETA still intact, could operate with required funding

- Bypass line for inverse Compton scattering source designed
- One pass high-current operation for ERL studies for EIC (electron cooling)
- CEBAF 22 GeV upgrade similar to CBETA
 - Two FFA return loops, 10–22 GeV
 - Splitter lines for 6 passes
 - Not ERL
 - Studies of CBETA issues would be beneficial

Conclusion

Conclusions

- We successfully built and commissioned CBETA
 - 1-Pass ERL mode
 - 4-Pass ERL mode at low current
- Many issues have not yet been fully addressed and would benefit from future machine studies
- CBETA could restart operations given sufficient funding, and there are many studies of interest that could be done

