

ERL2024, Sep 24, 2024

# Challenges and breakthroughs in recent RF Solid State PA design by Radial Combiner design with Initiatives for SDGs

Presented by Riichiro Kobana R&K Company Limited

#### Overview

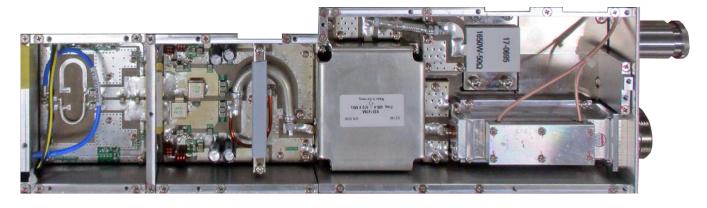


#### **Abstract**

R&K, an independent company, has achieved production of 2.3 million 1.9GHz microwave power amplifiers for mobile-comm's-base-stations and then also supplies wideband power amplifiers for automobile EMC testing for domestic automobile industries. Then 16 years ago, we started designing and producing some hundreds kW RF SSA for accelerator applications as alternatives to Klystron / tube.

The measure characteristics of SSA is a possibility to design a band in a very wide frequency range available from few MHz to 14 GHz, and its upgradability of max-power in few kW to few MW design even after system completed. Recently, SSA is being recognized the significant advantages over vacuum tubes in terms of size, low power consumption, higher efficiency, low cost, and adaptive power design. In addition to these, we have learnt that SSA has very low phase noise and low envelope noise that cannot be achieved with vacuum tubes.

All these advantages are transforming SSAs into the first-chosen RF power source even for particle accelerators. There is no doubt that all these improved performances of SSA will minimize overall resource utilization, and well match with sustainable industry and society.


#### SSA RF Module



#### 352MHz > 1kW • CW • PA Module



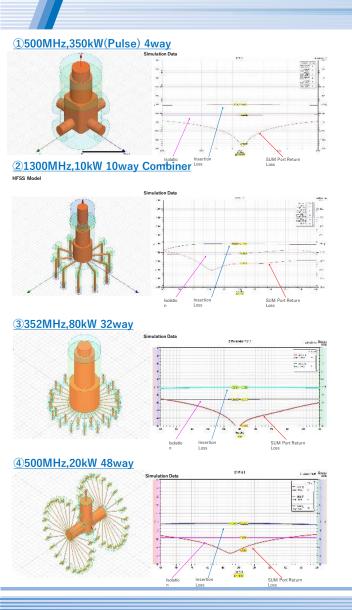
#### 500MHz > 1kW • CW • PA Module

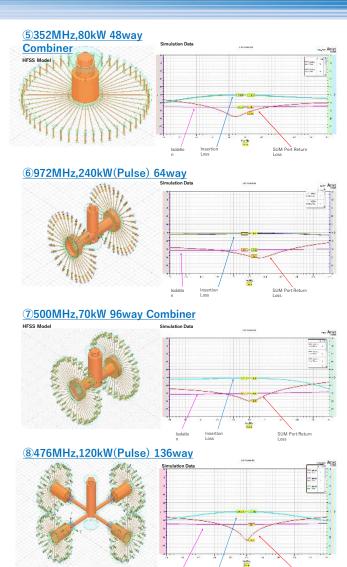


Final SSA Module "SIZE-A".

Typ. size for VHF SSA Module 400(L) x 92(W) x 30(H)mm,

G>+23dB, P-1dB>800W, and Psat>1.2kW at class AB biasing Efficiency DC-RF >76% @+50V with output Circulator protect.


Final SSA Module "SIZE-B".


Typ. size for UHF SSA Module 350(L) x 88(W) x 33(H)mm,

G>+22dB, P-1dB>750W, and Psat>1kW at class AB biasing Efficiency DC-RF >72% @+50V with output Circulator protect.

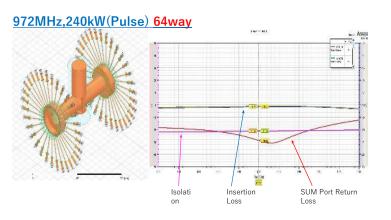
#### Various kind of design for very high power Radial Combiners

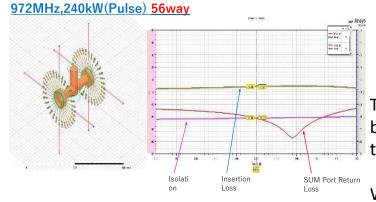






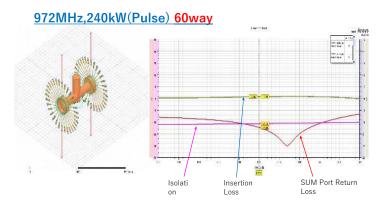
- X Low power consumption,
- ※ high efficiency

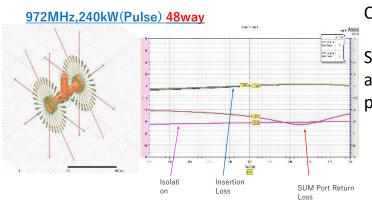

are all realized with following rugged radial power combiner circuits by HFSS and COMSOL simulation design.


- Odd, Even, and Prime ports design are all available.
- Max power is only limited up to the connector design.
- Solution to adjacent ports are achieved by the number of branches.
- Max. insertion loss is only -0.05dB to
  -0.15dB max. with very broadband.
- © RF Power Combiner using cavity resonators have high Q and low loss, but this method has a very low Q, so the temperature characteristics are very stable and the loss is relatively low.

In particular, most RF losses are caused by coax-cables, so the power combining method of the future will likely shift "coax with waveguide cascaded combiners".



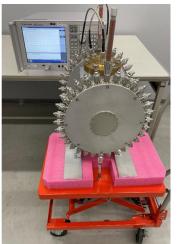

#### **Adaptive Power Amplifier Design**

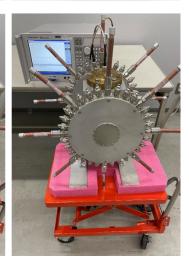




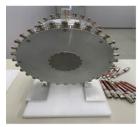

The fixed combiner device, but various branches make the Adaptive Functions.

With quarter wave "Short" Can change 64way, 60way, 56way, 48way Radial Power Combiner Functions.




Start with a small budget and scale to your maximum possible potential.









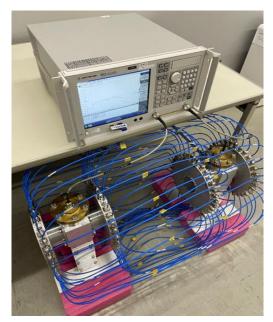














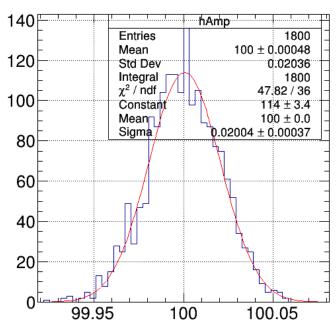

Adaptive 64 way Combiner and Quadrature Short 64/60/56/48 way

----Measurement----

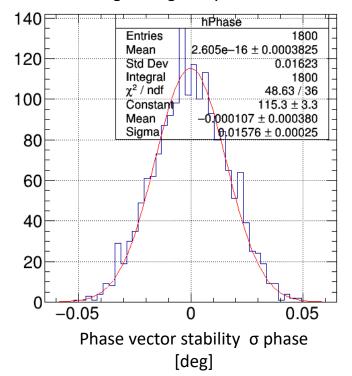


### R&K 476MHz SSA for SACLA - pulse by pulse stability R&K




#### Stability (short term)

► RF-out @ 100kW @476MHz 0.020%, 0.016deg (sigma)


I would like to express my sincere gratitude to the RIKEN team for giving us the opportunity to collect "phase and level stability data under free-running conditions of RF over 100kW".

For a long time, cost, reliability, and power efficiency came first, and it has been difficult for us to obtain such fulfilling stability data. Conventional vacuum tube amplifiers always have an electron transit time,

and they are extremely sensitive to the thermal noise. They are noise source. However, as shown here, solid-state amplifier is now possible to achieve this level of stability even without locking the signal by LLRF.



Level vector stability σ A/A [%] JASRI/RIKEN Eito Iwai, 2024, Private Communication

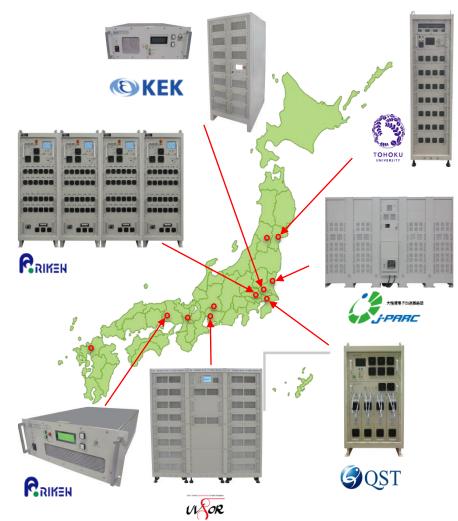




So far, we have covered the important aspects of the SDGs, such as SSA size, low power consumption, high efficiency, low cost, adaptive combiner design, very low phase noise and low envelope noise.

However, we will now move on to the most important topic of latest RF GaN products, where we will discuss the most important aspects of the SDGs, such as the outlook for GaN RF-Device power efficiency for the near future.

In the 1300 MHz band, the current LD-MOS efficiency is 58% for DC-RF, but R&K has already achieved a DC-RF efficiency of 70% with GaN device.


Also, in the 1500 MHz band, the current LD-MOS efficiency is 49% for DC-RF, but R&K has already achieved a DC-RF efficiency of 70% with GaN device.

Regretably, I am very sorry to say that as a result of discussions with the manufacturer, due to the NDA agreement, we are unable to disclose the detailed timeline of the semiconductor devices at this time. We are very sorry, but we will make an announcement at a later date, so I appreciate your understanding.

#### Delivery Record of R&K SSPA for National Laboratories in Japan



| Customer       | Prefecture | Frequency<br>(MHz) | Power<br>(kW) | Mode  | Qty  | Delivery      |
|----------------|------------|--------------------|---------------|-------|------|---------------|
| Tohoku Univ.   | Miyagi     | 500                | 15            | CW    | 1    | Mar. 2019     |
|                |            | 9000               | 1             | Pulse | 1    | Mar. 2021     |
| QST            | Miyagi     | 2856/5712          | 0.8/0.8       | Pulse | 1/20 | Mar.2021~     |
| Yamagata Univ. | Yamagata   | 200                | 150           | Pulse | 1    | Mar. 2015     |
|                |            | 114/571            | 12/10         | Pulse | 2/2  | Mar. 2017~    |
|                |            | 1300               | 8/16          | CW    | 2/1  | Mar. 2013~    |
| KEK            | Ibaraki    | 2856               | 0.6           | Pulse | 51   | Mar. 2014~    |
| NEN            | IDaraki    | 5200               | 1             | Pulse | 1    | In Production |
|                |            | 11424              | 0.5           | Pulse | 2    | Mar. 2011~    |
|                |            | 0.01~254           | 0.5           | CW    | 18   | Mar. 2010~    |
|                | Ibaraki    | 324                | 30/120        | Pulse | 2/1  | Dec. 2013~    |
| J-PARC         |            | 0.01~254           | 0.5           | CW    | 9    | Aug. 2012~    |
|                |            | 0.1~100            | 3             | CW    | 5    | Mar. 2012~    |
|                | Saitama    | 74                 | 4.5           | CW    | 1    | Apr. 2018     |
| RIKEN          |            | 200/500            | 200/300       | Pulse | 1/1  | Mar. 2014~    |
|                |            | 0.5~15             | 1/3           | CW    | 1/1  | Mar. 2021~    |
|                | Chiba      | 100                | 30            | Pulse | 1    | Jan. 2013     |
| QST            |            | 10000              | 0.8           | Pulse | 1    | May. 2015     |
|                |            | 14000              | 1             | Pulse | 1    | Feb. 2022     |
| Tokyo Tech     | Tokyo      | 200                | 150/250       | Pulse | 1/1  | Jul.2020      |
| TMU            | Tokyo      | 2450               | 1             | Pulse | 1    | Dec.2023      |
| NIFS           | Gifu       | 0.009~250          | 0.7           | CW    | 1    | Dec. 2017     |
| UVSOR          | Aichi      | 90.115             | 5/20          | CW    | 1/1  | Apr. 2015~    |
| Kyoto Univ.    | Kyoto      | 2856               | 0.4           | Pulse | 6    | Mar. 2021     |
| Ryoto oniv.    |            | 6000               | 0.2           | Pulse | 1    | Jul. 2018     |
| RIKEN          | Hyogo      | 2856/5712          | 0.8/0.8       | Pulse | 2/11 | Mar. 2019~    |
| SPring-8       | Hyogo      | 2856               | 1.2           | Pulse | 1    | Jan. 2012     |
| Si Tilig U     |            | 0.01~254           | 0.25/0.5      | CW    | 6/3  | Mar.2009~     |
| SAGA-LS        | Saga       | 0.009~100          | 0.1           | CW    | 1    | Aug. 2013     |



Rev. 0.06 Jan. 04, 2024

#### **R&K Company Limited**

721-1 Maeda, Fuji-City, Shizuoka-Pref. 416-8577 Japan Tel:+81-545-31-2600 E-mail:info@rkco.jp Fax: +81-545-31-1600 URL: http://rk-microwave.com

#### Recent Delivery Record of R&K SSPA (Narrowband) for SLAC















| Nº         | Frequency | Power      | Project    | Total<br>Oty | Status                     |
|------------|-----------|------------|------------|--------------|----------------------------|
| 0          | 185.7MHz  | 60kW CW    | LCLS-II    | 2            | Delivered                  |
| 2          | 185.7MHz  | 6kW CW     | LCLS-II-HE | 1            | Delivered                  |
| 3          | 199.6MHz  | 3kW CW     | LCLS-II    | 1            | Delivered                  |
| <b>(4)</b> | 358.54MHz | 64kW Pulse | SPEAR3     | 1            | Delivered                  |
| <b>®</b>   | 475MHz    | 500W CW    | 1MeV       | 1            | Delivered                  |
| ֈ          | 476MHz    | 100W CW    | LCLS-II    | 3            | Delivered                  |
| Ø          | 1.3GHz    | 80W CW     | LCLS-II    | 7            | Delivered                  |
| 0          | 1.3GHz    | 3.8kW CW   | LCLS-II    | 278          | Delivered                  |
| 3          | 1.3GHz    | 4.6kW CW   | LCLS-II    | 3            | Delivered                  |
| 0          | 1.3GHz    | 7kW CW     | LCLS-II-HE | 25<br>179    | Delivered<br>In Production |
| 0          | 3.9GHz    | 900W CW    | LCLS-II    | 18           | Delivered                  |
| 0          | 11.424GHz | 500W Pulse | LCLS-II    | 3            | Delivered                  |

|                          | 271001171101           |
|--------------------------|------------------------|
| Oty Delivered<br>to SLAC | Delivery               |
| 2                        | Dec. 2017              |
| 1                        | Dec. 2022              |
| 1                        | Sep. 2017              |
| 1                        | Jun. 2016              |
| 1                        | Apr. 2023              |
| 3                        | May 2021               |
| 2<br>5                   | Oct. 2017<br>Aug.2018  |
| 262                      | Jan.'16 ~ Aug.'18      |
| 1 2                      | Apr. 2018<br>Dec. 2018 |
| 7                        | Sep. 2020<br>Dec. 2020 |
| 8<br>2                   | Aug. 2018<br>Nov. 2019 |
| 1 2                      | Aug. 2017<br>Mar. 2021 |

| Oty Delivered<br>to Fermilab | Delivery      |
|------------------------------|---------------|
|                              |               |
|                              |               |
|                              |               |
|                              |               |
|                              |               |
|                              |               |
|                              |               |
| 8                            | Jan.~ Nov.'16 |
|                              |               |
| 8                            | Sep. 2020     |
| 8                            | Oct. 2018     |
|                              |               |

| Oty Delivered<br>to JLAB | Delivery      |
|--------------------------|---------------|
|                          |               |
|                          |               |
|                          |               |
|                          |               |
|                          |               |
|                          |               |
|                          |               |
| 8                        | Jan.~ May '16 |
|                          |               |
| 8                        | Dec. 2020     |
|                          |               |
|                          |               |



185.7MHz

60kW CW



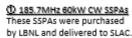


358.54MHz 64kW Pulse



1.3GHz 3.8kW/4.6kW CW




1.3GHz 7kW CW



3.9GHz 900W CW (2 SSAs in 1 Rack)



11.424GHz 500W Pulse





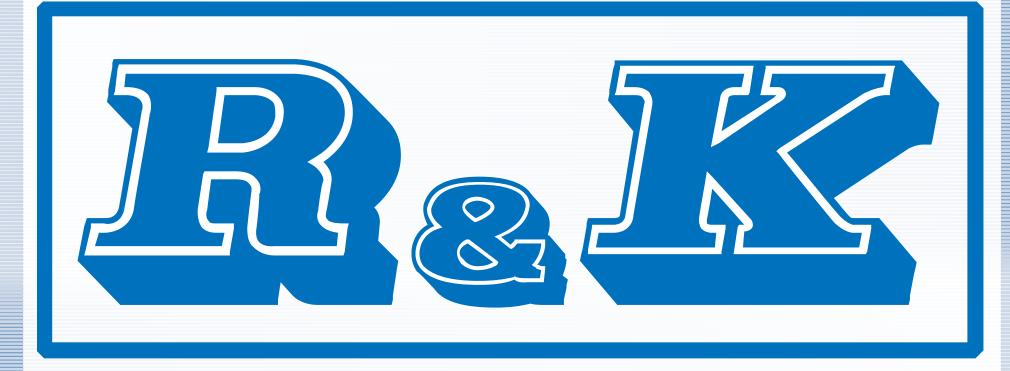
As of Mar. 21, 2024

## Recent Delivery Record of R&K SSPA for Overseas National Laboratories



#### < Alphabetical Order >

| Laboratory | Country | Frequency<br>(MHz) | Power<br>(kW)   | Mode           | Qty.            | Delivery                                |
|------------|---------|--------------------|-----------------|----------------|-----------------|-----------------------------------------|
| Argonne    | USA     | 352                | 2<br>200<br>160 | CW<br>CW       | 16<br>1<br>12   | Jul. 2019<br>Aug. 2022<br>In production |
|            | 00/1    | 117.3              | 10              | CW             | 1               | Jan. 2020                               |
|            |         | 850~1200           | 0.5             | CW             | 5               | May 2021                                |
| Brookhaven | USA     | 0.009~254          | 0.5             | CW             | 8               | Feb. 2019~                              |
| CERN       | Switz.  | 5~1000             | 0.25            | CW             | 3               | Nov. 2015                               |
| CERIN      | SWILZ.  | 5~1200             | 0.3~0.5         | CW             | 2               | Jan. 2019                               |
| CLS        | Canada  | 0.009~250          | 0.1             | CW             | 5               | Oct. 2018                               |
| DESY       | Germany | 1300               | 8               | CW             | 1               | In production                           |
| Fermilab   | USA     | 0.01~225           | 2.5             | CW             | 2               | Jan. 2021                               |
| 1 emiliab  | 00/     | 325                | 7               | Pulse          | 1               | Jul. 2022                               |
|            |         | 185.7              | 60              | CW             | 2               | Dec. 2017                               |
| LBNL       | USA     | 0.009~250          | 0.2             | CW             | 2<br>4          | Oct. 2019<br>Oct. 2021                  |
|            |         | 500                | 60              | CW             | 2               | Nov. 2023                               |
| Los Alamos | USA     | 201.25             | 20              | Pulse          | 3               | Dec. 2018~                              |
| Notre Dame | USA     | 476                | 10              | Pulse          | 1               | Jan. 2016                               |
|            |         | 2856               | 0.3             | Pulse          | 2               | Oct. 2015~                              |
| RAL/STFC   | UK      | 0.5~30             | 3               | CW             | 14              | Aug. 2017~                              |
|            |         | 1.8~4              | 100             | Pulse          | 1               | Jan. 2020                               |
|            |         | 202.5              | 4.5<br>10       | Pulse<br>Pulse | 1<br>5          | Jul. 2022<br>Jul. 2023                  |
| SLAC*      | USA     | 1300               | 3.8<br>4.6<br>7 | CW<br>CW       | 278<br>3<br>204 | Jan. 2016~<br>Apr. 2018~<br>Sep. 2020~  |
|            |         | 0.009~254          | 0.5             | CW             | 2               | Aug. 2018<br>Jul. 2020                  |
|            |         | 0.009~320          | 1               | CW             | 2               | Sep. 2021                               |
| TRIUMF     | Canada  | 650~2800           | 0.3             | CW             | 1               | Mar. 2019                               |


<sup>\*</sup>See "Recent Delivery Status of R&K SSPA for SLAC" for more comprehensive delivery record including the other models.



#### **R&K Company Limited**

721-1 Maeda, Fuji-City, Shizuoka-Pref. 416-8577 Japan Tel:+81-545-31-2600 E-mail:info@rkco.jp Fax:+81-545-31-1600 URL: http://rk-microwave.com





# R&K Company Limited

RF/Microwave Power Amplifiers and Components

www.rk-microwave.com

