

# MECHANISMS FOR ACHIEVING THE SEALAB BEAM MODES

# From modelling to optimisation strategies

Emily Jayne Brookes, HZB ERL24, KEK emily.brookes@helmholtz-berlin.de





## The SEALab facility (bERLinPro successor)

linac module 3 x 7 cell SRF cavities 44 MeV

First beam coming in Nov! **beam dump** 6.5 MeV, 100 mA = 650 kW HZB Helmholtz Zentrum Berlin

merger dogleg

### modified Cornell booster

3 x 2 cell SRF cavities 4.5 MeV

diagnostic lin

1.4 cell SRF cavities 1.5-2.3 MeV, single SC solenoid,

srf-gun



chiny.Drookes@hemmontz\_Derminae



## SEALab Models for the SRF Gun and First Metre





## SEALab Models for the SRF Gun and First Metre



## **6-Dimensional Analytical Model**



### **Properties:**

- Fast, closed-form solutions from simplified dynamics
- First-order, linear approximations of beam behaviours in response to condition changes

### **Application in SEALab:**

- Initial commissioning
  - Setting initial parameters
  - Control system setup
  - Important controls/observables
- Beam matching
  - Match transverse properties at each stage of the accelerator

#### Based on K.-J. Kim,

'Rf and space-charge effects in laser-driven rf electron guns'

# **Longitudinal Analytical Model**

| $dE_f$             | $M_{55}$ | $M_{56}$ | $dE_i$ |
|--------------------|----------|----------|--------|
| $dt_f \rfloor^{-}$ | $M_{65}$ | $M_{66}$ | $dt_i$ |

Cavity electric field:

$$A_z(z,t) = A_0 \cos(kz) \sin(2\pi ft + \phi_0)$$

Force:

$$\boldsymbol{F} = m\ddot{\boldsymbol{z}} = -eA_z(\boldsymbol{z})\hat{\boldsymbol{e}}_z$$

Energy gain:



Exit phaseInitial phaseExit phase:
$$\phi_e^* = \phi_0^* + \frac{1}{2\alpha \sin(\phi_0)}$$
Exit kinetic energy: $E_f = \alpha mc^2(n\pi \sin(\phi_e) + \cos(\phi_e))$ EJ. Brookes | ERL24 | KEK  
emily.brookes@helmholtz-berlin.deNumber of  
cells

### **Properties:**

- Fast, closed-form solutions from • simplified dynamics
- First-order, linear approximations of • beam behaviours in response to condition changes

## **Application in SEALab:**

- Initial commissioning
  - Setting initial parameters
  - Control system setup
  - Important controls/observables
- Beam matching
  - Match transverse properties at • each stage of the accelerator

#### Based on K.-J. Kim,

'Rf and space-charge effects in laser-driven rf electron guns'

## **Longitudinal Analytical Model**



### **Properties:**

- Fast, closed-form solutions from simplified dynamics
- First-order, linear approximations of beam behaviours in response to condition changes

### **Application in SEALab:**

- Initial commissioning
  - Setting initial parameters
  - Control system setup
  - Important controls/observables
- Beam matching
  - Match transverse properties at each stage of the accelerator

#### Based on K.-J. Kim,

'Rf and space-charge effects in laser-driven rf electron guns'

# **Tracking Simulations (ASTRA)**



x-position of 6 particles, 3 started with non-zero x positions, 3 started on axis with y-offset.



### **Properties:**

- Slow, precise numerical solutions to complex beam dynamics
- Incorporates higher order effects like space charge and non-linear field components

## **Application in SEALab:**

- Detailed beam dynamics studies
  - Understanding under realistic conditions
  - Modelling through the gun
- Higher-order effects
  - Modelling of space charge forces and halo generation
  - Design of gun solenoid for emittance compensation

### ASTRA, DESY

# **Tracking Simulations (ASTRA)**



EJ. Brookes | ERL24 | KEK

emily.brookes@helmholtz-berlin.de

### **Properties:**

- Slow, precise numerical solutions to complex beam dynamics
- Incorporates higher order effects like space charge and non-linear field components

### **Application in SEALab:**

- Detailed beam dynamics studies
  - Understanding under realistic conditions
  - Modelling through the gun
- Higher-order effects
  - Modelling of space charge forces and halo generation
  - Design of gun solenoid for emittance compensation

HZB Helmholtz Zentrum Berlin

## Surrogate Model



### **Properties:**

- Fast estimates of computationally expensive simulations
- Require training (computationally expensive) but only once

### **Application in SEALab:**

- Real-time corrections
  - Quickly estimate beam properties
  - Predict beam parameter response to non-linear machine changes
- Online control system
  - Can be integrated into feedback loops and optimisation strategies
  - Enable fast decision-making

#### Based on B Esuain PhD thesis

# Surrogate Model

|               | Knobs     |                 | Observables        |          |
|---------------|-----------|-----------------|--------------------|----------|
| Control knok  | )         | Range           | Observable         |          |
| Bunch charge  | e         | 7pC or 77pC     | Longitudinal emit  | tance    |
| RMS laser tir | ne        | [1e-3,10e-3] ns | Bunch length       |          |
| RMS laser siz | ze        | [0.5,2] mm      | Energy             |          |
| Emission pha  | ase       | [-20,20] deg    | Energy deviation   |          |
| Gun field am  | plitude   | [10.25] MV/m    | Transverse spot si | ize (x5) |
| Solenoid am   | plitude   | [0,0.05] T      | Emittance (x5)     |          |
| Quadrupole    | gradients | [-0.1,0.1] T/m  | Divergence (x5)    |          |
| (x5)          |           |                 |                    | 19       |

### **Properties:**

- Fast estimates of computationally expensive simulations
- Require training (computationally expensive) but only once

### **Application in SEALab:**

- Real-time corrections
  - Quickly estimate beam properties
  - Predict beam parameter response to non-linear machine changes
- Online control system
  - Can be integrated into feedback loops and optimisation strategies
  - Enable fast decision-making

Based on B Esuain PhD thesis



## **SEALab Models**



## Introducing MOBO (Multi-Objective Bayesian Optimisation)

Optimisation algorithm which uses Bayesian methods to iteratively sample the optimal solutions to problems with competing objectives

Well-suited for high-dimensional problems with competing \_\_\_\_\_\_\_objectives

Balances exploration of new parameter space with exploitation of already known promising areas Probes the set of nondominated solutions (Pareto Front) efficiently and widely

## Introducing MOBO (Multi-Objective Bayesian Optimisation)

Data 'D' Model 'M' Acquisition function 'A' y=f(X)

Optimising an accelerator often requires finding a trade-off between two competing objectives (eg. minimise emittance and minimise bunch length)

MOBO aims to find the optimal trade-off possibilities

- 1. Define objectives to optimise
- 2. Sample initial points
- 3. Use Gaussian Process modelling to fit the data
- 4. Evaluate the next point to sample at using an acquisition function
- 5. Sample at new point and add this to the dataset
- 6. Iterate until termination criteria is met

## Introduction to MOBO



EJ. Brookes | ERL24 | KEK emily.brookes@helmholtz-berlin.de

## Introduction to MOBO



## Introduction to MOBO



EJ. Brookes | ERL24 | KEK emily.brookes@helmholtz-berlin.de Objective 1



÷

10

20

## Key takeaways

## SEALab has many diverse applications. This requires a flexible machine

| Spec              | ERL     | UED      | EBWT      |
|-------------------|---------|----------|-----------|
| Rep rate          | 1.3 GHz | 100 kHz  | 1.3 GHz   |
| Emittance         | <1 µm   | 10^-3 μm | 1-6 µm    |
| Pulse length      | 2-3 ps  | 1 fs     | 2-10 ps   |
| Bunch<br>charge   | 77 pC   | 0.1 pC   | 77-500 pC |
| Av current        | 100 mA  |          | 20-100 mA |
| Kinetic<br>energy | 44 MeV  | 3.5 MeV  | 7 MeV     |

EJ. Brookes | ERL24 | KEK emily.brookes@helmholtz-berlin.de Modelling and optimisation allow us to efficiently find solutions complex problems

**MOBO** provides a solid foundation for advanced, scalable optimisation strategies and has been tested on tracking simulations

Pareto Front, Iteration 5

