

Phasing and Calibration of the Main Linac Cryomodule Cavities for the CBETA Energy Recover Linac

J. Scott Berg, Brookhaven National Laboratory ERL 2024

September 25, 2024

Phasing/Calibration Goal

- In our model, each cavity has certain voltage and phase settings
- In the control system, we set voltage and phase values
- Goal: make the voltage/phase settings set in the control system correspond to what we set in the model

The CBETA MLC Linac

- Six 1.3 GHz cavities
- Beam injected at 6 MeV
- 36 MeV design energy gain, about 6 MeV/cavity
- BPMs at the entrance and exit of the linac
	- Capable of precise beam arrival measurement relative to 1.3 GHz reference

Method Overview

- Measure time of flight
- BPMs at entrance and exit of linac
- One cavity on at a time
- Voltage set to a significant fraction of beam energy
- Swing phase through 360°
- Fit measurements to model
	- Scaling factor for voltage
	- Offset for phase

Model: Cavity

- On-axis cavity field from finite-element cavity model dE $\frac{ds}{dt}$ $= qV G(s) \cos(\omega t + \phi)$ • Normalize $G(s)$ for $v = c$ particle: $\int G(s) \cos$ ω $\mathcal{C}_{\mathcal{C}}$ $+ \phi$) ds = cos($\phi + \phi_c$)
- Define phase ϕ_0 based on 6 MeV constant-velocity particle $\int G(s) \cos$ ω $\beta_0 c$ $+ \phi + \phi_0$ | $ds = A \cos \phi$

Model: Linac

- In our accelerator model, keep the same reference energy for timing through the entire linac for each pass
	- Design energy at the entrance to the linac for that pass
	- Reference timing doesn't change when we change machine settings
	- Calibration done here applies directly to model
- Components at known longitudinal positions
	- $s_1...s_6$ for cavities (relative to $s = 0$ in cavity model)
	- s_0 and s_7 for entrance and exit BPMs

Model: Arrival Time Difference

- Integrate ODEs within cavity from s_a to s_b , with $E(s_a) = E_0$ and $t(s_a) = s_a/\beta_0 c$: dt $\frac{ds}{dt}$ = $c\sqrt{E^2-(mc^2)^2}$ dE \overline{ds} $= qV G(s) \cos(\omega t + \phi + \phi_0)$
- Result is $t(s_h) = t_m(V, \phi, E_0)$ and $E(s_h) = E_m(V, \phi, E_0)$

Model: Arrival Time Difference

• Arrival time difference between accelerated particle for cavity at s and particle with cavities off $T(V, \phi, E_0, s)$ $= t_m(V, \phi, E_0) + \frac{(s_7 - s - s_b)E_m(V, \phi, E_0)}{E_m(V, \phi, E_0)} + \frac{(s_7 - s - s_a)E_0}{E_m(V, E_0)}$

$$
L_m(V,\varphi,L_0) = \frac{1}{c\sqrt{E_m(V,\phi,E_0)^2 - (mc^2)^2}} + \frac{1}{c\sqrt{(E_0)^2 + (mc^2)^2}}
$$

The Measurement and Fit

- Measure arrival time difference between entrance and exit BPMs
	- Mathematically unnecessary, but removes noise
- Make a high precision measurement of time T_0 with cavities off
- Turn cavity *i* on, scan evenly spaced points in phase setting ψ_k , possibly at more than one voltage setting V_i , measure times T_{ki}
- Find phase offset ϕ_i , scaling factor λ_i , and incoming energy E_0 that minimize (fit all cavities together to get common E_0)

$$
\sum_{ikl} [T_{kl} - T_0 - T(\lambda_i V_l, \phi_i + \psi_k, E_0, s_i)]^2
$$

Fast, Precise, and Robust Calculation: Newton's Method

• General least-squares problem like ours:

$$
f(\vec{p}) = \sum_j [T_j(\vec{p}) - t_j]^2
$$

• Minimum occurs when

$$
0 = \frac{\partial f}{\partial \vec{p}} = \sum_{j} \frac{\partial T_j}{\partial \vec{p}} [T_j(\vec{p}) - t_j]
$$

• Apply Newton's method to this: very fast and robust, will also need $\partial^2 f/\partial p_i \partial p_j$ and therefore $\partial^2 T_k/\partial p_i \partial p_j$, plus a good initial guess

Computing Derivatives

- Only nontrivial derivatives to compute are for t_m and E_m
- General differential equation for $\vec{z}(\vec{z}_0,\vec{p},s)$, $\vec{z}(\vec{z}_0,\vec{p},0)=\vec{z}_0$: \overline{dz} \overline{ds} $= g(z(z_0, p, s), p)$
- Can write differential equations for derivative: $\frac{a}{\overline{a}}$ \overline{a} s $\frac{\partial Z_i}{\partial x_i}$ σp_j $= \sum_{k}$ $\frac{\partial g_i}{\partial x_i}$ ∂Z_k $\boldsymbol{dz_k}$ op_j $+\frac{\partial g_i}{\partial n_i}$ σp_j $\frac{a}{\overline{a}}$ \overline{a} s $\frac{\partial Z_i}{\partial x_i}$ dz_{0j} $= \sum_{k}$ $\frac{\partial g_i}{\partial x_i}$ σz_k $\boldsymbol{dz_k}$ σz_{0j} $\frac{\partial z_i}{\partial n_i}$ $\frac{\partial p_j}{\partial}$ $= 0 \frac{\partial z_i}{\partial z_{0,i}}$ $\left. \frac{\partial z_{0j}}{\partial z_{0j}} \right|_{0}$ $= \delta_i$
- Similar equations for second derivative
- Derivatives of \vec{g} with respect to parameters are easy for this system
- Thus find all derivatives with coupled ODEs over a single cavity

Initial Guess

 $7 - s_i$

- Use data points with maximum and minimum arrival times T_+
- Guess phase offset ϕ_i assuming these are trough/crest
- For λ_i and E_0 , assume all energy gained at cavity center, solve $T_{\pm} - T_0 \approx$ $\frac{(s_7 - s_i)(E_0 \pm \lambda_i V_i)}{c\sqrt{(E_0 \pm \lambda_i V_i)^2 - (mc^2)^2}} - \frac{(s_7 - s_i)E_0}{c\sqrt{(E_0)^2 - (mc^2)^2}}$ • Guess: expand to second order in λ_i , solving for E_0 and λ_i $c(T_{\pm} - T_0)$ $\approx \pm$ $\lambda_i V_i (mc^2)^2$ $(v_0)^2 - (mc^2)^2]^{3/2}$ $3E_0 (mc^2)^2 \lambda_i^2$ $\frac{l}{l}$.
.
. $(v_0)^2 - (mc^2)^2\frac{5}{2}$

Sample Run

- 10 degree steps, 3000 kV and 4000 kV settings
- First and last cavity shown
- Errors dominated by systematics: model, measurement
- Uncertainties computable: phase uncertainties between 0.04° and 0.21°, calibration from 0.17% to 0.50%, E_0 6.6 keV

Practical Details

- Beam going off-axis messes up time of flight measurement, but difficult to quantify exactly how
	- We measured the MLC misalignment and steered the beam to the center
- The method did not work well for our injector cryomodule
	- Steering by cavities was severe
	- Low energy makes beam transmission for all phases difficult
- In practice used 30° steps and one voltage, only calibrating phases and checking injection energy
	- RF phases relative to gun reset on each machine start/trip

Practical Details

- Actual voltage assumed to be linear in control system voltage
- Voltage calibration *should* not be needed very often
- But we did have a slow drift in actual voltage, likely because our control readback did not accurately reflect the voltage
- Algorithm fast & robust: never failed unless data taking failed

Summary

- Created a method to quickly calibrate phases and voltages of our main linac cavities by scanning phases of cavities one at a time with injected beam
- Using a good cavity model, Newton's method, and a good initial guess, the computation runs very quickly and never failed
- Careful cavity phase calibration and RF modeling enabled 4-pass energy recovery in CBETA

