

IGU

STATUS OF SUPERCONDUCTING THIN FILMS ON HIGHER ORDER MODE ANTENNAS FOR MESA

Florian Hug, <u>Paul Plattner</u>, Timo Stengler Institut für Kernphysik JGU Mainz 27.09.2024

SPONSORED BY THE

MAINZ ENERGY-RECOVERING SUPERCONDUCTING ACCELERATOR

Injector NC	5 MeV	
Cryomodules SC	25 MeV	
EB-mode P2	155 MeV @150 μA (pol.)	
ER-mode MAGIX	105 MeV @ 1 (10) mA	
Q ₀	$1.25 * 10^{10}$	
f	1.3 GHz	

darkMESA Photo-Multipliers MAGIX New building Jet Target Quadrupole Scattering Chamber Dipoles GEM based TPC Scintillation Detectors Tracking Integrating Detectors Cherenkov Solenoid Magnet Shielding Detectors Old building Shielding **P2** Liquid Hydrogen Target

Pb Glass

Talk from T. Stengler (TU005)

092024

JGU

MESA ENHANCED ELBE-TYPE CRYOMODULES (MEEC)

2 Cryomodule of the "Rossendorf"-type (2x 9-Cell TESLA/XFEL cavities) fabricated by Research Instruments (RI)

Specific modification for MESA:

- Piezo tuner (XFEL/Saclay)
- Sapphire ceramic for HOM-antenna
- Optimized cooling of HOM RF-cable
- Modified LHe-port for the Joule-Thomson valve
- \rightarrow Two MESA Cryomodules are onsite and tested
- → ALICE Module (spare/testing)*
- \rightarrow Further optimisation for beam current at 10 mA

*We would like to thank STFC Daresbury for their generous gift.

MAGNETIC FIELD AT ANTENNA

$$H_{max,T} = 1\% H_{peak}$$
$$E_{acc} = 12.5 \frac{MeV}{m}$$

Maximum of magnetic field at antenna $H_{max,T} = 0.53 \text{ mT}$ Field distribution: maximum at the tip of the antenna Field maxima of HOMs not at tip and $H_{max,HOM} < H_{max,T}$

 $H_{max,HOM}/_{H_{max,T}} \approx 0.001$ for strongest dipole mode

POWER LOSS AT ANTENNA TIP

Material	Nb			
<i>Т_С /</i> К	9.27			
F / GHz	1.3			
λ_L / nm	39			
ξ / nm [1]	380			
$\Delta_{reduced}$ [2]	1.5			
[1] all values are multiplied by $\frac{\pi}{2}$ [2] all values are multiplied by $\frac{1.60218 \times 10^{-2}}{k_{10} \times T_{20}}$				

27 09 2024

Heat loss at the antenna can be calculated via R_S :

$$P_{loss} = \frac{1}{2}R_S \int |H|^2 ds$$

Dominated by 1.3 GHz Beam-cavity interaction neglected!

IGU

HIGHER ORDER MODES - BEAM INDUCED HOMS

In ERL-mode: 4 e- beams simultanious (2x accelerating; 2x decelerating)

Power stored in HOMs (longitudinal):

$$P_{HOM} = N * q * k * I$$

N: #beams; q: bunch charge; k: loss factor; I: average beam current

 \rightarrow 30% of P_{HOM} at HOM antenna tip

L. Merminga, D.R. Douglas, and G.A. Krafft. High-current energyrecovering electron Linacs. Annual Review of Nuclear and Particle Science, 53(1):387–429, 2003.

Simulated Beam Blow Up limit: **12 mA** (C. Stoll, Phd. Thesis, 2020 Mainz) Calculated thermal power limit: **95 mW**

 $(\sim 3.2 \text{ mA})$ (T. Stengler, Phd Thesis, 2020 Mainz)

l [mA]	q [pC]	P _{HOM} [mW]	P _{Tip} [mW]
1	0.7	30.8	10
10	7.7	3080	1000

HIGHER ORDER MODES – GEOMETRICAL BOUNDARIES

How to handle 1000 mW?

- Geometrical design of HOM antenna and F-part cannot be changed
- \rightarrow Minimal invasive change:
- Change the surface material to a higher T_C superconductor

27 09 2024

POWER LOSS AT ANTENNA TIP

Material	Nb	NbTiN	Nb ₃ Sn
<i>Т_С /</i> К	9.27	17.3	18
F / GHz	1.3	1.3	1.3
λ_L / nm	39	240	90
ξ / nm [1]	380	50	70
$\Delta_{reduced}$ [2]	1.5	2.8	3.1

[1] all values are multiplied by $\frac{\pi}{2}$ [2] all values are multiplied by $\frac{1.60218 \times 10^{-22}}{k_B \times T_{C,i'}}$

27 09 2024

Heat loss at the antenna can be calculated via R_S :

$$P_{loss} = \frac{1}{2}R_S \int |H|^2 ds$$

Dominated by 1.3 GHz Beam-cavity interaction neglected!

IGU

27 09 2024

SC THIN FILMS – TOSCA/SUPER SURFER

- UHH: NbTiN on Nb (SIS possible) Plasma Enhanced Atomic Layer Deposition (PEALD)
- TUDA: Nb₃Sn on OFHC Cu Co-Sputtering

35mm

https://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Karte_Deutsc hland.svg/1513px-Karte_Deutschland.svg.png

00 202/

11

SC THIN FILMS – NBTIN ON HOM ANTENNA

NbTiN(PEALD) @Hamburg Substrate: Niobium Time: 4 days Thickness: ~50nm ($<\lambda_L$) $T_C = 16$ K (on flat samples) Deposition Temperatur < 300°C \rightarrow Slow Thermal Annealing at 900°C

Nb₃Sn (Co-Sputtering) @TU Darmstadt Substrate: Copper Time: 1 hour Thickness: ~400nm ($\geq \lambda_L$) T_C = ~14 K (on cylindrical substitue) Deposition Temperatur 520°C

Picture: Amir Fahood

ERL 2024 - P. Plattner

TECHNISCHE UNIVERSITÄT DARMSTADT

THE JORNEY OF A NBTIN COATED ANTENNA

- 1. KYOCERA in Japan \rightarrow Mainz: production of Nb antenna
- 2. Mainz \rightarrow UHH: NbTiN coating (currently here!)
- 3. UHH \rightarrow Mainz
- 4. Mainz \rightarrow KYOCERA for brasing
- 5. KYOCERA \rightarrow Mainz for testing in cavities

REFURBISHMENT OF AN ELBE-TYPE CRYOMODYLE

Personal entrance (ISO 6) Material entrance (ISO 7) Clean room 1 (ISO 6) Ultrasonic bath (USB) system High pressure rinse (HPR) Personal airlock Material gate Clean room 2 (ISO 4)

REFURBISHMENT OF AN ELBE-TYPE CRYOMODYLE

Material entrance

15

Ultrasonic bath (USB) system:

- 30 min USB with Tickopur R33
- Rinsing with ultrapure water < 0.18 μS

ERL 2024 - P. Plattner

REFURBISHMENT OF AN ELBE-TYPE CRYOMODYLE

HPR: (TESLA recipe) each cell rinsed for 5 min (18x)

10.202

Drying for ~24 hour after HPR

Next steps:

- Installing accessories
- Vacuum with RGA
- Cold test at ATMF (basline)
- 2nd cold test with coated HOM antennas 2025
- Assembling of the CM
- Test CM with e- beam (2026)

ERL 2024 - P. Plattner

SUMMARY & OUTLOOK

Summary:

• Beam induced HOM power will exceed the power limit of the HOM antennas with the 10 mA upgrade at MESA

 $P_{HOM,B} = 1000 \ mW > P_{MESA,lim} = 95 \ mW$

• SC Thin Films of NbTiN and Nb₃Sn will **increase the limit**

ERL 2024 - P. Plattner

SUMMARY & OUTLOOK

Summary:

• Beam induced HOM power will exceed the power limit of the HOM antennas with the 10 mA upgrade at MESA

 $P_{HOM,B} = 1000 \ mW > P_{MESA,lim} = 95 \ mW$

• SC Thin Films of NbTiN and Nb₃Sn will **increase the limit**

Outlook:

- Refurbishment of 2 9-cell TESLA cavities is ongoing (MESA-ERL-test CM)
- Coating of antennas ongoing
- Cavity performance test via VCT
- CST simulation for HOM heating/ wake field ()

Thank you for your attention!

Work supported by BMBF through 05H21UMRB1.

ERL 2024 - P. Plattner

27 09 2024

SC THIN FILMS

Ba 18 1 14

SC THIN FILMS – PLASMA-ENHANCED ALD (PEALD) NBTIN

IGU

21

SC THIN FILMS – NBTIN ON HOM ANTENNA

ERL 2024 - P. Plattner

27 09 2024

SC THIN FILMS - NB_3SN CO-Sputtering

IGU

DESY Design (right)

• 29.56 mm tip length

Design from RI (left)

- •Cyocera feedthrough with flange and antenna tip
- •25 mm tip length

Bakeout at max 300C

09202/