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Motivation

Q1: What is the maximum entropy that can be given to a finite region?
Q2: What is the structure of such a spacetime g,,,,?

= Important for finding the fundamental d.o.f. in quantum gravity
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* We will estimate the entropy including self-gravity
many local d.o.f. with local interactions |
sufficiently excited states {|)} :
|
|

S[g.0] = L dz, st
Vus“ =0

and find g, st. oo



Setup: 1-bit quantum

* Consider (g,,, |Y)) satisfying G, = 8nG(|T,, [1)) self-consistently.
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* For a sufficiently excited state |1))),

h 1
Ar) ~ —— < R()72 /ka\
E(T) ~curvature >

= WKB-like particle without feeling gravity ~ radius of curvature ©

* Many such quanta behave typically like a local thermal equilibrium:

E(T)NTIOC(T) Thermodynamical Typicality
e.g. [Goldstein, et al. 2006]

= Such a quantum has 1-bit of entropy. 11 = Z—g = energy/1bit;
L __ao |

“1-bit quantum”



WKB-like estimation of S[g,,,]

 Decompose the system into the smallest spherical subsystems.
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Entropy density per proper radial length:

s(r) = (r) for A7 ~ A(r)
AT o
' Hamiltonian constraint % = 0: i
| — 2 (_7t |
* Thus, the entropy S[g,,] can be estimated as L___af_a_(i)__—__8_759_7"__&_7}_(_7*_)_)___:
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Entropy density per proper radial length:
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* Thus, the entropy S[g,,] can be estimated as L___af_a_(i)__—__8_759_7"__&_7}_(_7*_)_)___:

1
e(r’)zl 2 g,)self-gravity

1 (R 2 ("
S[g“"]~ﬁf() dr N(r)e(r) [1—;[0 dr' N(r') m’

_ _ For the semi-classical description,
=For a given N(7), €mnax Provides Sy qx- m

e(r) < €max~ Tg (n: O(1) constant >>1)
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Upper bound

* A static spacetime has a timelike Killing vector globally.

= No trapped surface exists. ivarssenoviia 2003 | &~ "’;;”S“V(Vj”séﬁgd metric
=-0-7

=The semi-classical condition: isorkin-wald-zhang 1981]

* Then, we can get the uEper bound:

1
§<—= | drroya(r)
lp 0 = 8nGr? (—Tf(r))




Entropy-maximized spacetime (1/2)

* To get the saturating configuration gl*w, we solve
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and use two consistencies:
- thermodynamics,
- semi-classical approximation.



Entropy-maximized spacetime (1/2)

* To get the saturating configuration g;‘w, we solve

2~ G @) (r = a()) for €(r) = €~ %

and use two consistencies:
thermodynamics,
semi-classical approximation.

Thus, we reach uniquely the Physmal saturating conflguratlon

il r’ o),
ds? = — 27 20 g2 4 dr? + rzdﬂz.i 0(nly),

27"2 20  i__- - -~ |

[Kawai-Matsuo-Yokokura 2013,
Kawai-Yokokura 2014, 2015, 2016,2020,2021

Can be obtained in various ways and robust. o owra 2022, to-kewai-Liyao-vokokura 2023]

- A(r) < 1/gr,,(‘r)(‘r — a(r)) can be verified in a dynamical model.
Non-perturbative solution of G, = 87TG(1/)|TW W) for A trewerioroiurs 2020
n =# of d.o.f. in the theory



Entropy-maximized spacetime (2/2)

* The entropy-maximized spacetime
an R%Z-r? 2

_R*-r? r
ds? = —5ze 201 dt? + %dr2 + r2dQ?

—_————— —_—_————— e e — 4

' °R:O(n—1l§)<<0(%)

« almost flat around r = 0

= T e | . )

i (Te ) =0(1) | =>No singularity

|- Stabilize the system | e e [t :

- Not fluid | 7 T

:rSurface from thermodynamics
i on
|
|
|

- \*0=<""0) ________ | ‘J_r/

particle creatiovr?1

* Maximum entropy

Smax

[Yokokura 2022]



Entropy-maximized spacetime (2/2)

* The entropy-maximized spacetime
0172 R%Z-r? r2

2 _ “Son J+2 2 1012
ds —ﬁe 20n dt +2—dr + r<dQ)

—_————— __________________|

« almost flat around r = 0

T |

i <T96> =0(1) . =No singularity

- Stabilize the system ™~ »tfengpressure -~ =77~ e J
- Not fluid - TS

““““““““““““““ g \‘/\‘\/\‘ uniform in r direction ™
e

' Surface from thermodynamics VA\ = N(r) = const.~n

i on? AV =entropy density
| R=ap+ 2a, (> ao) QL 7” 21V 20
 (m=26My) AT ) =

- —
—_
-~ —
- =
—— —_—

* Maximum entropy

2 271\/20 A
Smax j drVgT'T S(T') - j dT' O' 4‘l2 [Yokokura 2022]
p

A = 4nR? = 4mai + 0(1)
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Verification of Bousso bound

We have obtained

time

space

This is the Bousso bound: [Bousso 1999]

S = de s“—f dZﬂs“
» >

t
ours [ Bousso’s

Vus“ =0

2 : light sheet

X;: spacelike
region

g, saturates local sufficient conditions for the Bousso bound:

surface
atr =R

1
|—Suk“| < E (T”v)k“kVA{, [Flanagan-Marolf-Wald 2000],

|k”kVV S | 27T< )k”kv[Bousso-FIanagan-l\/IaroIf2003]
u=vi] — A

Thus, we have verified the Bousso bound by constructing explicitly the
saturatlng configuration.



ConC I UsS i oNns [Yokokura, arXiv: 2309.00602]

» Considered 4D spherical static spacetime for highly excited states {|y)}.
* Estimated the entropy S[g,,] including the self-gravity.

* Found the entropy-maximized spacetime uniquely:
2 R2—12 2

on _ r
ds* = —=—e 200 dt* 4+ —dr* +r?dQ>
2r 20_ Non-perturbative solution of
Gy = 8G(Y|T,, |) for h
Dense configuration
(without horizon or singularity)

e Verified the Bousso bound:

S < Smax — 4_12; & the result of the self-gravity
p

where the information is stored inside.

* Q1: What is the maximum entropy S,,,4, that can be given a finite region?

A L.
= Siax = @ (in this class)

* Q2: What is the structure of such a spacetime?
= Necessarily, the above metric (in this class)



A naive estimation of entropy density

Future directions
* Origin of Holography?

of n local d.o.f. lpi(l_) ‘Zi

|
|
| f
l Full excitations :
|
| ;
|
|

Jr /

_ n
L,r? K Snaive (x)"’g

R
S = 47‘[j drr? s(r) =— N
max . 9rr (1) 4% from 5(r) ~

= Self-gravity suppresses excitations of local d.o.f. ? [workin progress]

* Quantum BH = the dense configuration?

" o o
K A
— S = @, R = Ay
- n, Sy e
* Phenomenology as a BH mimicker? |
- BH shadow image [work in progress with C.Y. Chen (iTHEI\/IS)]/\I,'[J !

- Gravitational Waves [work in progress with N. Oshita (Hakubi-YITP)]

Thank you! . LT~
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