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Motivation 

• Consider them in a semi-classical level.

• We will estimate the entropy including self-gravity
𝑆𝑆 𝑔𝑔𝜇𝜇𝜇𝜇 = �

Σ
𝑑𝑑Σ𝜇𝜇 𝑠𝑠𝜇𝜇

and find 𝑔𝑔𝜇𝜇𝜇𝜇∗ s.t.
𝑆𝑆 𝑔𝑔𝜇𝜇𝜇𝜇 ≤ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 ≡ 𝑆𝑆 𝑔𝑔𝜇𝜇𝜇𝜇∗

4D spherical static
spacetime region

a collection of 
excited quanta in 𝜓𝜓 ,𝑔𝑔𝜇𝜇𝜇𝜇=

𝐺𝐺𝜇𝜇𝜇𝜇 = 8𝜋𝜋𝐺𝐺 𝜓𝜓|𝑇𝑇𝜇𝜇𝜇𝜇|𝜓𝜓semi-classical Einstein eq

- many local d.o.f. with local interactions
- sufficiently excited states {|𝜓𝜓⟩}
- ∇𝜇𝜇𝑠𝑠𝜇𝜇 = 0

“weight of information”

←self-consistent eq 
in a mean field approximation

gravity = classical 𝑔𝑔𝜇𝜇𝜇𝜇
matter = quantum �𝜙𝜙𝑖𝑖(𝑥𝑥)

Q1: What is the maximum entropy that can be given to a finite region?
Q2: What is the structure of such a spacetime 𝑔𝑔𝜇𝜇𝜇𝜇∗ ?

⇒Important for finding the fundamental d.o.f. in quantum gravity
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• Consider (𝑔𝑔𝜇𝜇𝜇𝜇 , |𝜓𝜓⟩) satisfying 𝐺𝐺𝜇𝜇𝜇𝜇 = 8𝜋𝜋𝜋⟨𝜓𝜓|𝑇𝑇𝜇𝜇𝜇𝜇|𝜓𝜓⟩ self-consistently. 

• Characteristic excitation energy: 𝜖𝜖 𝑟𝑟 ～smallest one that contributes to 𝑆𝑆
• For a sufficiently excited state |𝜓𝜓⟩ , 

𝜆𝜆 𝑟𝑟 ∼
ℏ
𝜖𝜖 𝑟𝑟

≤ ℛ 𝑟𝑟 − 1
2

⇒WKB-like particle without feeling gravity
• Many such quanta behave typically like a local thermal equilibrium: 

𝜖𝜖 𝑟𝑟 ~𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟)

⇒ Such a quantum has 1-bit of entropy.

Setup: 1-bit quantum

𝑅𝑅

~𝜆𝜆(𝑟𝑟)

𝜖𝜖(𝑟𝑟)

|𝜓𝜓⟩

proper 
length

curvature

Thermodynamical Typicality
e.g. [Goldstein, et al. 2006]local temperature

𝑇𝑇 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑆𝑆

= energy/1bit

“1-bit quantum”

4D spherical static 
spacetime

|𝜓𝜓⟩

𝑔𝑔𝜇𝜇𝜇𝜇
𝜓𝜓 𝑇𝑇𝜇𝜇𝜇𝜇 𝜓𝜓 ≠ 0 𝜓𝜓 𝑇𝑇𝜇𝜇𝜇𝜇 𝜓𝜓 = 0
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• Decompose the system into the smallest spherical subsystems.

• Define a quasi-local function

• Entropy density per proper radial length: 

𝑠𝑠 𝑟𝑟 =
𝑁𝑁 𝑟𝑟
Δ�̂�𝑟 for Δ�̂�𝑟 ∼ 𝜆𝜆(𝑟𝑟)

• Thus, the entropy 𝑆𝑆[𝑔𝑔𝜇𝜇𝜇𝜇] can be estimated as 

⇒For a given 𝑁𝑁(𝑟𝑟),  𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 provides 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚.

WKB-like estimation of 𝑆𝑆[𝑔𝑔𝜇𝜇𝜇𝜇]

Hamiltonian constraint ℋ = 0: 
𝑎𝑎 𝑟𝑟 = 8𝜋𝜋𝐺𝐺𝑟𝑟2 −𝑇𝑇𝑡𝑡𝑡𝑡 𝑟𝑟

𝑆𝑆 𝑔𝑔𝜇𝜇𝜇𝜇 ~
1
ℏ�0

𝑅𝑅
𝑑𝑑𝑟𝑟𝑁𝑁 𝑟𝑟 𝜖𝜖 𝑟𝑟 1 −

2
𝑟𝑟 �0

𝑟𝑟
𝑑𝑑𝑟𝑟′ 𝑁𝑁 𝑟𝑟𝑟

𝜖𝜖 𝑟𝑟′ 2

𝑚𝑚𝑝𝑝
2

− 1
2 self-gravity

𝑁𝑁 𝑟𝑟 ≡
4𝜋𝜋𝑟𝑟2 𝑇𝑇�̂�𝑡�̂�𝑡(𝑟𝑟) Δ�̂�𝑟

𝜖𝜖 𝑟𝑟
for Δ�̂�𝑟 ∼ 𝜆𝜆(𝑟𝑟)

～ # of 1-bit quanta inside the subsystem for 𝑁𝑁 𝑟𝑟 ≫ 1
～ entropy of the subsystem

For the semi-classical description,

𝜖𝜖 𝑟𝑟 ≤ 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚~
𝑚𝑚𝑝𝑝

𝑛𝑛
(𝑛𝑛 ≫ 1: O(1) constant)

𝑅𝑅

𝑟𝑟

Δ�̂�𝑟~𝜆𝜆(𝑟𝑟)

𝜖𝜖(𝑟𝑟)

|𝜓𝜓⟩

proper 
length
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～ # of 1-bit quanta in the subsystem for 𝑁𝑁 𝑟𝑟 ≫ 1
～ entropy of the subsystem

For the semi-classical description,

𝜖𝜖 𝑟𝑟 ≤ 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚~
𝑚𝑚𝑝𝑝

𝑛𝑛
(𝑛𝑛 ≫ 1: O(1) constant)



• Decompose the system into the smallest spherical subsystems.

• Define a quasi-local function

• Entropy density per proper radial length: 

𝑠𝑠 𝑟𝑟 =
𝑁𝑁 𝑟𝑟
Δ�̂�𝑟 for Δ�̂�𝑟 ∼ 𝜆𝜆(𝑟𝑟)

• Thus, the entropy 𝑆𝑆[𝑔𝑔𝜇𝜇𝜇𝜇] can be estimated as 

⇒For a given 𝑁𝑁(𝑟𝑟),  𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 provides 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚.

WKB-like estimation of 𝑆𝑆[𝑔𝑔𝜇𝜇𝜇𝜇]
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Upper bound
• A static spacetime has a timelike Killing vector globally.
⇒No trapped surface exists.

⇒The semi-classical condition:
𝜆𝜆 𝑟𝑟 < 𝑔𝑔𝑟𝑟𝑟𝑟 𝑟𝑟 𝑟𝑟 − 𝑎𝑎 𝑟𝑟

• Then, we can get the upper bound:

𝑆𝑆 <
1
𝑙𝑙𝑝𝑝2
�
0

𝑅𝑅
𝑑𝑑𝑟𝑟 𝑟𝑟 𝜕𝜕𝑟𝑟𝑎𝑎 𝑟𝑟

[Sorkin-Wald-Zhang 1981]

[Mars-Senovilla 2003]

=static
𝑟𝑟

𝑎𝑎(𝑟𝑟)𝜆𝜆 𝑟𝑟 ~
ℏ
𝜖𝜖(𝑟𝑟)

𝑎𝑎(𝑟𝑟): Schwarzschild radius for 𝑟𝑟

Ex. 𝑘𝑘 = 𝜕𝜕𝑡𝑡 in Schwarzschild metric 

𝑘𝑘2 = − 1 −
𝑎𝑎0
𝑟𝑟

~

~
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• To get the saturating configuration 𝑔𝑔𝜇𝜇𝜇𝜇∗ , we solve 
𝜆𝜆 𝑟𝑟 ~ 𝑔𝑔𝑟𝑟𝑟𝑟 𝑟𝑟 𝑟𝑟 − 𝑎𝑎 𝑟𝑟 for 𝜖𝜖 𝑟𝑟 = 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚~

𝑚𝑚𝑝𝑝

𝑛𝑛
and use two consistencies:
- thermodynamics, 
- semi-classical approximation. 

• Thus, we reach uniquely the physical saturating configuration:

𝑑𝑑𝑠𝑠2 = −
𝜎𝜎𝜂𝜂2

2𝑟𝑟2
𝑒𝑒−

𝑅𝑅2−𝑟𝑟2
2𝜎𝜎𝜎𝜎 𝑑𝑑𝑡𝑡2 +

𝑟𝑟2

2𝜎𝜎
𝑑𝑑𝑟𝑟2 + 𝑟𝑟2𝑑𝑑Ω2.

- Can be obtained in various ways and robust.
→ 𝜆𝜆 𝑟𝑟 < 𝑔𝑔𝑟𝑟𝑟𝑟 𝑟𝑟 𝑟𝑟 − 𝑎𝑎 𝑟𝑟 can be verified in a dynamical model.

- Non-perturbative solution of 𝐺𝐺𝜇𝜇𝜇𝜇 = 8𝜋𝜋𝐺𝐺 𝜓𝜓 𝑇𝑇𝜇𝜇𝜇𝜇 𝜓𝜓 for ℏ
- 𝑛𝑛 = # of d.o.f. in the theory

[Kawai-Matsuo-Yokokura 2013, 
Kawai-Yokokura 2014, 2015, 2016,2020,2021,
Yokokura 2022, Ho-Kawai-Liyao-Yokokura 2023]

[Kawai-Yokokura 2020]

𝜎𝜎 = 𝑂𝑂 𝑛𝑛𝑙𝑙𝑝𝑝2 ,
1 ≤ 𝜂𝜂 < 2

~

Entropy-maximized spacetime (1/2)



Entropy-maximized spacetime (1/2)
• To get the saturating configuration 𝑔𝑔𝜇𝜇𝜇𝜇∗ , we solve 

𝜆𝜆 𝑟𝑟 ~ 𝑔𝑔𝑟𝑟𝑟𝑟 𝑟𝑟 𝑟𝑟 − 𝑎𝑎 𝑟𝑟 for 𝜖𝜖 𝑟𝑟 = 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚~
𝑚𝑚𝑝𝑝
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and use two consistencies:
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- semi-classical approximation. 
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2𝜎𝜎
𝑑𝑑𝑟𝑟2 + 𝑟𝑟2𝑑𝑑Ω2.

- Can be obtained in various ways and robust.
→ 𝜆𝜆 𝑟𝑟 < 𝑔𝑔𝑟𝑟𝑟𝑟 𝑟𝑟 𝑟𝑟 − 𝑎𝑎 𝑟𝑟 can be verified in a dynamical model.

- Non-perturbative solution of 𝐺𝐺𝜇𝜇𝜇𝜇 = 8𝜋𝜋𝐺𝐺 𝜓𝜓 𝑇𝑇𝜇𝜇𝜇𝜇 𝜓𝜓 for ℏ
- 𝑛𝑛 = # of d.o.f. in the theory

[Kawai-Matsuo-Yokokura 2013, 
Kawai-Yokokura 2014, 2015, 2016,2020,2021,
Yokokura 2022, Ho-Kawai-Liyao-Yokokura 2023]

[Kawai-Yokokura 2020]

𝜎𝜎 = 𝑂𝑂 𝑛𝑛𝑙𝑙𝑝𝑝2 ,
1 ≤ 𝜂𝜂 < 2

~



• The entropy-maximized spacetime 

𝑑𝑑𝑠𝑠2 = −
𝜎𝜎𝜂𝜂2

2𝑟𝑟2 𝑒𝑒
−𝑅𝑅

2−𝑟𝑟2
2𝜎𝜎𝜎𝜎 𝑑𝑑𝑡𝑡2 +

𝑟𝑟2

2𝜎𝜎
𝑑𝑑𝑟𝑟2 + 𝑟𝑟2𝑑𝑑Ω2

represents a dense configuration without horizon or singularity. 

• Maximum entropy

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = �
0

𝑅𝑅
𝑑𝑑𝑟𝑟 𝑔𝑔𝑟𝑟𝑟𝑟 𝑠𝑠(𝑟𝑟) = �

0

𝑅𝑅
𝑑𝑑𝑟𝑟

𝑟𝑟2

2𝜎𝜎
2𝜋𝜋 2𝜎𝜎
𝑙𝑙𝑝𝑝2

=
𝐴𝐴

4𝑙𝑙𝑝𝑝2

𝑅𝑅

particle creation

heat bath of 𝑻𝑻𝑯𝑯

strong pressure
𝑇𝑇𝜃𝜃
𝜃𝜃
∗

𝑟𝑟
𝜆𝜆(𝑟𝑟)~ 𝑛𝑛𝑙𝑙𝑝𝑝

Surface from thermodynamics

𝑅𝑅 = 𝑎𝑎0 +
𝜎𝜎𝜂𝜂2

2𝑎𝑎0
(> 𝑎𝑎0)

(𝑎𝑎0 ≡ 2𝐺𝐺𝑀𝑀0)

𝑇𝑇𝜃𝜃
𝜃𝜃 = 𝑂𝑂(1)

- Stabilize the system
- Not fluid

・ℛ = 𝑂𝑂 1
𝑛𝑛𝑙𝑙𝑝𝑝2

≪ 𝑂𝑂 1
𝑙𝑙𝑝𝑝2

・almost flat around 𝑟𝑟 = 0
⇒No singularity

uniform in r direction
⇒ 𝑁𝑁 𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑡𝑡. ~𝑛𝑛
⇒entropy density

𝑠𝑠 𝑟𝑟 =
2𝜋𝜋 2𝜎𝜎
𝑙𝑙𝑝𝑝2

Entropy-maximized spacetime (2/2)

[Yokokura 2022]



• The entropy-maximized spacetime 
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0
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0
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=
𝐴𝐴

4𝑙𝑙𝑝𝑝2

𝐴𝐴 ≡ 4𝜋𝜋𝑅𝑅2 = 4𝜋𝜋𝑎𝑎02 + 𝑂𝑂(1)

[Yokokura 2022]
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- Stabilize the system
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・ℛ = 𝑂𝑂 1
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Entropy-maximized spacetime (2/2)
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𝐴𝐴

4𝑙𝑙𝑝𝑝2

• This is the Bousso bound:
𝑆𝑆 = �

Σ𝑡𝑡
𝑑𝑑Σ𝜇𝜇 𝑠𝑠𝜇𝜇 = �

Σ𝐿𝐿
𝑑𝑑Σ𝜇𝜇𝑠𝑠𝜇𝜇
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ours Bousso’s
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[Flanagan-Marolf-Wald 2000],

[Bousso-Flanagan-Marolf 2003]
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Σ𝑡𝑡: spacelike 
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at 𝑟𝑟 = 𝑅𝑅

𝑠𝑠𝜇𝜇
𝑉𝑉
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Conclusions
• Considered 4D spherical static spacetime for highly excited states {|𝜓𝜓⟩}.
• Estimated the entropy 𝑆𝑆[𝑔𝑔𝜇𝜇𝜇𝜇] including the self-gravity.
• Found the entropy-maximized spacetime uniquely:

𝑑𝑑𝑠𝑠2 = −
𝜎𝜎𝜂𝜂2

2𝑟𝑟2 𝑒𝑒
−𝑅𝑅

2−𝑟𝑟2
2𝜎𝜎𝜎𝜎 𝑑𝑑𝑡𝑡2 +

𝑟𝑟2

2𝜎𝜎 𝑑𝑑𝑟𝑟
2 + 𝑟𝑟2𝑑𝑑Ω2.

• Verified the Bousso bound: 

𝑆𝑆 ≤ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 =
𝐴𝐴

4𝑙𝑙𝑝𝑝2
,

where the information is stored inside.

• Q1: What is the maximum entropy 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 that can be given a finite region?
⇒ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐴𝐴

4𝑙𝑙𝑝𝑝2
(in this class)

• Q2: What is the structure of such a spacetime?
⇒ Necessarily, the above metric (in this class)

Dense configuration
(without horizon or singularity) 

[Yokokura, arXiv: 2309.00602]

Non-perturbative solution of 
𝐺𝐺𝜇𝜇𝜇𝜇 = 8𝜋𝜋𝐺𝐺 𝜓𝜓 𝑇𝑇𝜇𝜇𝜇𝜇 𝜓𝜓 for ℏ

← the result of the self-gravity



Future directions
• Origin of Holography?

• Quantum BH = the dense configuration?

• Phenomenology as a BH mimicker? 

Thank you!

“BH”
Both have

𝑇𝑇 =
ℏ

4𝜋𝜋𝑎𝑎0
, 𝑆𝑆 =

𝐴𝐴
4𝑙𝑙𝑝𝑝2

, 𝑅𝑅 ≈ 𝑎𝑎0=?

[work in progress with C.Y. Chen (iTHEMS)]- BH shadow image
- Gravitational Waves

⇒Self-gravity suppresses excitations of local d.o.f. ?

𝑙𝑙𝑝𝑝

𝑙𝑙𝑝𝑝
𝑙𝑙𝑝𝑝

Full excitations 
of 𝑛𝑛 local d.o.f.  

from �̅�𝑠 𝑟𝑟 ~ 𝑛𝑛
𝑙𝑙𝑝𝑝𝑟𝑟2

≪ �̅�𝑠𝑛𝑛𝑚𝑚𝑖𝑖𝑛𝑛𝑛𝑛 𝑥𝑥 ~ 𝑛𝑛
𝑙𝑙𝑝𝑝3

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 4𝜋𝜋�
0

𝑅𝑅
𝑑𝑑𝑟𝑟𝑟𝑟2 𝑔𝑔𝑟𝑟𝑟𝑟 �̅�𝑠(𝑟𝑟) =

𝐴𝐴
4𝑙𝑙𝑝𝑝2

A naïve estimation of entropy density

[work in progress with N. Oshita (Hakubi-YITP)]

[work in progress]
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