Operator dynamics in Lindbladian SYK

Pratik Nandy
iTHEMS, RIKEN
\&
Yukawa Institute for Theoretical Physics, Kyoto University

KEK Theory workshop 2023, Tsukuba

Based on 1) arXiv: 2212.06180 (JHEP) with B. Bhattacharjee (IBS), X. Cao (ENS) and T. Pathak (IISc)
2) arXiv: 2311.00753 with B. Bhattacharjee (IBS) and T. Pathak (IISc)

Operator growth

Consider any Hamiltonian H. Start with a initial simple operator, say O_{0}. Under the time evolution, the simple operator becomes a complicated operator $O(t)=e^{i H t} O_{0} e^{-i H t}$.

$$
O(t)=O_{0}-i t\left[H, O_{0}\right]-\frac{t^{2}}{2!}\left[H,\left[H, O_{0}\right]\right]+\frac{i t^{3}}{3!}\left[H,\left[H,\left[H, O_{0}\right]\right]\right]+\cdots=O_{0}-i t \mathscr{L} O_{0}-\frac{t^{2}}{2!} \mathscr{L}^{2} O_{0}+\frac{i t^{3}}{3!} \mathscr{L}^{3} O_{0} \cdots=e^{i \mathscr{L} t} O_{0} .
$$

The time evolution is expanded on a basis of nested commutators.

$$
\text { Liouvillian } \quad \mathscr{L} \cdot=[H, \cdot]
$$

$$
\tilde{O}_{n}=\mathscr{L}^{n} O_{0}, \quad n=0,1,2, \ldots
$$

Increasing support of many operators

The basis states may not be orthonormal. So we use a Gram-Schmidt (GS) orthonormalisation produces to produce orthonormal basis (Krylov basis).

$$
\tilde{O}_{n} \xrightarrow{\mathrm{GS}} \mathcal{O}_{n} \quad\left\langle\mathcal{O}_{m} \mid \mathcal{O}_{n}\right\rangle=\delta_{m n} \quad \text { Inputs: }
$$

Inner product:

$$
\langle A \mid B\rangle=\frac{1}{D} \operatorname{Tr}\left(A^{\dagger} B\right)
$$

Inputs:

Inputs:

Hamiltonian H and the initial operator O_{0}

Outputs:
Lanczos algorithm

Lanczos coefficients and the Krylov basis $\left\{\mathcal{O}_{n}\right\}$
"For chaotic systems, the Lanczos coefficients grow linearly, and this is the maximum growth possible"

$$
b_{n} \sim \alpha n
$$

The time evolution is in Krylov basis:

$$
|O(t)\rangle=\sum_{n} i^{n} \varphi_{n}(t)\left|\mathcal{O}_{n}\right\rangle
$$

The φ_{n} 's satisfy the following equation:

$$
\dot{\varphi}_{n}(t)=b_{n} \varphi_{n-1}(t)-b_{n+1} \varphi_{n+1}(t)
$$

K-complexity is the average location of the particle in Krylov chain: $\quad K(t):=\sum_{n} n\left|\varphi_{n}(t)\right|^{2}$

For chaotic systems, K-complexity grows exponentially:

$$
K(t) \sim e^{2 \alpha t}
$$

What happens in open quantum systems?

We are interested in the Markovian dynamics, where he evolution of any operator is governed by the adjoint of Lindbladian

$$
\mathcal{O}(t)=e^{i \mathscr{L}_{o}^{\dagger} t} \mathcal{O}_{0}, \quad \mathscr{L}_{o}^{\dagger} \mathcal{O}=[H, \mathcal{O}]-i \sum_{k}\left[\pm L_{k}^{\dagger} \mathcal{O} L_{k}-\frac{1}{2}\left\{L_{k}^{\dagger} L_{k}, \mathcal{O}\right\}\right] .
$$

The operators L_{k} are known as jump (Lindblad) operators and they encode the information between the system and the interaction.

We are mostly ignorant about the specific details of the environment.

Due to the non-unitary evolution, the Lanczos algorithm fails.

$$
H=i^{q / 2} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{q} \leq N} j_{i_{1} \cdots i_{q}} \psi_{i_{1}} \psi_{i_{2}} \cdots \psi_{i_{q}} \quad \text { with } \quad\left\langle j_{i_{1} \cdots i_{q}}\right\rangle=0 \quad \text { and } \quad\left\langle j_{i_{1} \cdots i_{q}}^{2}\right\rangle=2^{q-1} \frac{(q-1)!\mathscr{J}^{2}}{q N^{q-1}}
$$

Class 1: Linear jump operators:

$$
L_{k}=\sqrt{\lambda} \psi_{k}, \quad k=1,2, \cdots, N
$$

$$
\text { Simple } \longrightarrow \text { Complex }
$$

Every fermions dissipate at equal rate. Mimics to a two-sided Keldysh wormhole.

Class 2: Random quadratic jump operators

$$
\begin{aligned}
& L^{a}=\sum_{1 \leq i \leq j \leq N} V_{i j}^{a} \psi_{i} \psi_{j}, \quad a=1,2, \cdots, M . \\
& \left.\left\langle V_{i j}^{a}\right\rangle=\left.0 \quad\langle | V_{i j}^{a}\right|^{2}\right\rangle=\frac{2 V^{2}}{N^{2}} \quad \forall i, j, a
\end{aligned}
$$

Kulkarni-Numasawa-Ryu (2021)
Sa-Ribeiro-Prosen (2021)

The action of the dissipative part of the Lindbladian results

$$
\mathscr{L}_{D}^{\dagger} \mathcal{O}_{n}=i \zeta q R V^{2} n \mathcal{O}_{n}, \quad a_{n} \sim i R V^{2} n
$$

where $\zeta \sim o(1)$. Similar expressions also hold for generic p-body dissipation.

We verify the result using bi-Lanczos algorithm, which generalises Lanczos algorithm for non-unitary evolution.

Construct to separate bi-orthonormal Krylov spaces

$$
\begin{aligned}
& \mathbb{K}^{j}\left(\mathscr{L}_{o}^{\dagger},\left|p_{1}\right\rangle\right)=\left\{\left|p_{1}\right\rangle, \mathscr{L}_{o}^{\dagger}\left|p_{1}\right\rangle,\left(\mathscr{L}_{o}^{\dagger}\right)^{2}\left|p_{1}\right\rangle, \ldots\right\}, \quad\left\langle q_{m} \mid p_{n}\right\rangle=\delta_{m n} \\
& \mathbb{K}^{j}\left(\mathscr{L}_{o},\left|q_{1}\right\rangle\right)=\left\{\left|q_{1}\right\rangle, \mathscr{L}_{o}\left|q_{1}\right\rangle, \mathscr{L}_{o}^{2}\left|q_{1}\right\rangle, \ldots\right\} .
\end{aligned}
$$

Bhattacharya-PN-Nath, Sahu (2023)
Bhattacharjee-PN-Pathak (2023)

In this bi-orthonormal basis, the Lindbladian takes an "ideal" tridiagonal form

$$
\mathscr{L}_{o}^{\dot{\dagger}}=\left(\begin{array}{ccccc}
i\left|a_{1}\right| & b_{1} & 0 & \cdots & 0 \\
b_{1} & i\left|a_{2}\right| & b_{2} & \cdots & 0 \\
0 & b_{2} & i\left|a_{3}\right| & b_{3} & \cdots \\
\ldots & \ldots & b_{3} & \cdots & \cdots \\
0 & \ldots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \cdots & \cdots
\end{array}\right)
$$

We propose an operator growth hypothesis in open systems based on the results of Sachdev-Ye-Kitaev (SYK) model.

Growth is completely determined by the asymptotic behavior of (two sets of) Lanczos coefficients.

$$
a_{n} \sim i \chi \mu n, \quad b_{n} \sim \alpha n
$$

Parker-Cao-Avdoshkin-Scaffidi-Altman (2018)
Bhattacharjee-Cao-PN-T. Pathak (2022)
Bhattacharjee-PN-Pathak (2023)

$$
\text { Krylov complexity } \quad K(t)=\frac{\eta\left(1-u^{2}\right) \tanh ^{2}(t)}{1+2 u \tanh (t)-\left(1-2 u^{2}\right) \tanh ^{2}(t)}
$$

Weak dissipation limit

$$
K(t)=\eta\left[\sinh ^{2}(t)-2 u \sinh ^{3}(t) \cosh (t)+O\left(u^{2}\right)\right]
$$

A systematic asymptotic analysis gives

$$
K(t) \sim 1 / u \quad t_{*} \sim \ln (1 / u)
$$

Environment acts like an indirect probe which perform continuous measurement.

Growth of the K-complexity in presence of dissipation.

Outlook：

1．We motivate to understand＂dissipative quantum chaos＂．

2．We believe that the dissipative timescale and and the saturation is generic and robust for any dissipative chaotic systems．A valid question is to understand how this dissipative time scale is related to the scrambling lime．

3．Generalizing chaos bound for open quantum systems．What happens for non－Markovian evolution？

4．Is there any connection with the level statistics of Ginibre ensemble and the Krylov complexity？

> Thank you...

5．Other interesting questions．．．
どうもありがとうございます

