Operator dynamics in Lindbladian SYK
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Operator growth

Consider any Hamiltonian H. Start with a initial simple operator, say O, . Under the time evolution, the simple operator becomes a

complicated operator O(¢) = e'"! O, e 1

t? 1 t? i .
O() = O = illH. Op) = ——{H. [H. Oy)] + ;—'[H, [H, [H, Ogll] + - = Oy = itL Oy = ~L* Oy + ’3—'523 Oy = %10, .

The time evolution is expanded on a basis of nested commutators. Liouvillian £ -=1[H, -]

~ Increasing support of many operators
0 =0y, n=0,12, - J SHPP Y op

The basis states may not be orthonormal. So we use a Gram-Schmidt (GS) orthonormalisation produces to produce
orthonormal basis (Krylov basis).
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Hamiltonian H and the Lanczos algorithm Lanczos coefficients and

1 initial operator O the Krylov basis { ©®
Inner product: (A|B) = BTr(ATB) P 0 y 10,}



Universal operator growth hypothesis Parker-Cao-Avdoshkin-Scaffidi-Altman (2018)

“For chaotic systems, the Lanczos coefficients grow linearly, and this is the maximum growth possible” b, ~an.
The time evolution is in Krylov basis: |0(1)) = Z " ()| 0,) Simple » Complex
n
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The @, ’s satisfy the following equation: @,(t) =b,p, (1) — b, 19,1 Pn
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K-complexity is the average location of the particle in Krylov chain:  K(7) := Z n|e,(t) k . : : o
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For chaotic systems, K-complexity grows exponentially: K(t) ~ oot



What happens in open quantum systems?

We are interested in the Markovian dynamics, where he evolution of any operator is governed by the adjoint of Lindbladian

. 1 |
O(t) = oLt 0,, 0 = [H, 0] - iZ [iL,j OL, — > {LIij, @}] . Lindblad (1976)
k Gorini-Kossakowski-Sudarshan (1976)

The operators L, are known as jump (Lindblad) operators and they encode the information between the
system and the interaction.
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We are mostly ignorant about the specific details of the environment.
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Due to the non-unitary evolution, the Lanczos algorithm fails. ! j



System is the SYK:
Sachdev-Ye (1993), Kitaev (2015)
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Class 1: Linear jump operators:

L.=vAw, k=12N.

Every fermions dissipate at equal rate. Mimics to a two-sided Keldysh wormhole.

Class 2: Random quadratic jump operators L = Z Viww;, a=12M.
1<i<j<N Kulkarni-Numasawa-Ryu (2021)
i 12 Sa-Ribeiro-Prosen (2021)
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The action of the dissipative part of the Lindbladian results

Sf;g @ = ié’qRVzn O, , a, ~ iRV?n .

where { ~ o(1). Similar expressions also hold for generic p-body dissipation.

We verify the result using bi-Lanczos algorithm, which generalises Lanczos algorithm for non-unitary evolution.

K(ZL Ip) = {1p1). L5 p). (L)% | pi), ...},

Construct to separate bi-orthonormal Krylov spaces (G| Pr) = Oy
Kj(goa 1q) ={lq,). <, |Q1>agg 1q,),---}-
Bhattacharya-PN-Nath, Sahu (2023)
Bhattacharjee-PN-Pathak (2023)
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In this bi-orthonormal basis, the Lindbladian takes an “ideal” tridiagonal form SZZ | Y by tlasl b
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We propose an operator growth hypothesis in open systems based on the results of Sachdev-Ye-Kitaev (SYK) model.

Growth is completely determined by the asymptotic behavior of (two sets of) Lanczos coefficients.

Parker-Cao-Avdoshkin-Scaffidi-Altman (2018)

a, ~ yun, b ~an.
Bhattacharjee-Cao-PN-T. Pathak (2022)

Bhattacharjee-PN-Pathak (2023)
n (1 — uz) tanh?(¢)

Krylov complexit K() = :
y PIeXIty I+ 2utanh() — (1 — 2u2) tanh?(7)
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1000;
Weak dissipation limit K(t) =n [sinhz(t) — 2u sinh?(¢)cosh(?) + 0(u2)] :
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A systematic asymptotic analysis gives K(t) ~ 1/u t« ~ In(1/u) 1 e '
0.1

Environment acts like an indirect probe which perform continuous measurement. Growth of the K-complexity in presence of dissipation.



Outlook:

1. We motivate to understand “dissipative quantum chaos”.

2. We believe that the dissipative timescale and and the saturation is generic and robust for any dissipative chaotic systems. A
valid question is to understand how this dissipative time scale is related to the scrambling lime.

3. Generalizing chaos bound for open quantum systems. What happens for non-Markovian evolution?

4. Is there any connection with the level statistics of Ginibre ensemble and the Krylov complexity?

Thank you...

5. Other interesting questions... ESEHBURE S T NET
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