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Consider any Hamiltonian . Start with a initial simple operator, say  . Under the time evolution, the simple operator becomes a 
complicated operator   .

H O0
O(t) = eiHt O0 e−iHt

O(t) = O0 − it[H, O0] −
t2

2!
[H, [H, O0]] +

it3

3!
[H, [H, [H, O0]]] + ⋯ = O0 − itℒ O0 −

t2

2!
ℒ2 O0 +

it3

3!
ℒ3 O0⋯ = eiℒt O0 .

Increasing support of many operators

Liouvillian ℒ ⋅ = [H, ⋅ ]

Operator growth
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Inputs:


 Hamiltonian  and the 
initial operator 

H
O0

Outputs:


 Lanczos coefficients and 
the Krylov basis {𝒪n}

Lanczos algorithm  

The time evolution is expanded on a basis of nested commutators. 

Õn = ℒn O0 , n = 0,1,2, ⋯

The basis states may not be orthonormal. So we use a Gram-Schmidt (GS) orthonormalisation produces to produce 

orthonormal basis (Krylov basis).

Õn 𝒪n
GS ⟨𝒪m |𝒪n⟩ = δmn

⟨A |B⟩ =
1
D

Tr(A†B)Inner product:



Universal operator growth hypothesis

bn ∼ α n .

For chaotic systems, -complexity grows exponentially: K K(t) ∼ e2αt

“For chaotic systems, the Lanczos coefficients grow linearly, and this is the maximum growth possible”

Parker-Cao-Avdoshkin-Scaffidi-Altman (2018)

·φn(t) = bnφn−1(t) − bn+1φn+1(t)The ’s satisfy the following equation:φn

|O(t)⟩ = ∑
n

inφn(t) |𝒪n⟩The time evolution is in Krylov basis: 

K(t) := ∑
n

n |φn(t) |2-complexity is the average location of the particle in Krylov chain: K
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What happens in open quantum systems?

ℒ†
o𝒪 = [H, 𝒪] − i∑

k
[±L†

k 𝒪Lk −
1
2 {L†

k Lk, 𝒪}] .𝒪(t) = eiℒ†
ot 𝒪0 , Lindblad (1976)

Gorini-Kossakowski-Sudarshan (1976)
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Due to the non-unitary evolution, the Lanczos algorithm fails.

We are interested in the Markovian dynamics, where he evolution of any operator is governed by the adjoint of Lindbladian

The operators  are known as jump (Lindblad) operators and they encode the information between the 
system and the interaction.

Lk

We are mostly ignorant about the specific details of the environment.



⋅ ⋅ ⋅⋅ ⋅ bn+1an+1cn

φn φn+1 φn+2φn−1φn−2⋅#0

Simple Complex

⋅ ⋅ ⋅⋅ ⋅ bn+1an+1cn

φn φn+1 φn+2φn−1φn−2#0
⋅
Simple Complex

Class 2: Random quadratic jump operators

H = iq/2 ∑
1≤i1<i2<⋯<iq≤N

ji1⋯iq ψi1ψi2⋯ψiq

La = ∑
1≤i≤ j≤N

Va
ij ψiψj , a = 1,2,⋯, M .

Kulkarni-Numasawa-Ryu (2021)

Sa-Ribeiro-Prosen (2021)

⟨ |Va
ij |2 ⟩ =

2V2

N2
∀i, j, a⟨Va

ij⟩ = 0

System is the SYK:

Lk = λ ψk , k = 1,2,⋯, N .

Class 1: Linear jump operators:

⟨j2
i1⋯iq⟩ = 2q−1 (q − 1)!𝒥2

qNq−1⟨ji1⋯iq⟩ = 0with and

Sachdev-Ye (1993), Kitaev (2015)
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Every fermions dissipate at equal rate. Mimics to a two-sided Keldysh wormhole.



The action of the dissipative part of the Lindbladian results

ℒ†
D 𝒪n = iζqRV2n 𝒪n , an ∼ iRV2 n .

where . Similar expressions also hold for generic -body dissipation.ζ ∼ o(1) p

We verify the result using bi-Lanczos algorithm, which generalises Lanczos algorithm for non-unitary evolution.

⟨qm |pn⟩ = δmnConstruct to separate bi-orthonormal Krylov spaces
𝕂j(ℒ†

o, |p1⟩) = { |p1⟩, ℒ†
o |p1⟩, (ℒ†

o)2 |p1⟩, …} ,

𝕂j(ℒo, |q1⟩) = { |q1⟩, ℒo |q1⟩, ℒ2
o |q1⟩, …} .

In this bi-orthonormal basis, the Lindbladian takes an “ideal” tridiagonal form ℒ†
o =

i |a1 | b1 0 ⋯ 0
b1 i |a2 | b2 ⋯ 0
0 b2 i |a3 | b3 ⋯
⋯ ⋯ b3 ⋯ ⋯
0 ⋯ ⋯ ⋯ ⋯
0 0 ⋯ ⋯ ⋯

.

Bhattacharjee-PN-Pathak (2023)

Bhattacharya-PN-Nath, Sahu (2023)
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We propose an operator growth hypothesis in open systems based on the results of Sachdev-Ye-Kitaev (SYK) model.

Growth is completely determined by the asymptotic behavior of (two sets of) Lanczos coefficients.

an ∼ iχμn ,
Parker-Cao-Avdoshkin-Scaffidi-Altman (2018)

Bhattacharjee-Cao-PN-T. Pathak (2022)
bn ∼ αn .

Krylov complexity K(t) =
η (1 − u2) tanh2(t)

1 + 2u tanh(t) − (1 − 2u2) tanh2(t)
.

Weak dissipation limit K(t) = η [sinh2(t) − 2u sinh3(t)cosh(t) + O(u2)] ,

A systematic asymptotic analysis gives K(t) ∼ 1/u t* ∼ ln(1/u)

Bhattacharjee-PN-Pathak (2023)

u = 0
u = 0.001
u = 0.01
u = 0.1
~ exp(2t)
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Growth of the K-complexity in presence of dissipation.
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Environment acts like an indirect probe which perform continuous measurement.



Outlook:

2. We believe that the dissipative timescale and and the saturation is generic and robust for any dissipative chaotic systems. A 
valid question is to understand how this dissipative time scale is related to the scrambling lime.

1. We motivate to understand “dissipative quantum chaos”.

3. Generalizing chaos bound for open quantum systems. What happens for non-Markovian evolution?

4. Is there any connection with the level statistics of Ginibre ensemble and the Krylov complexity?

5. Other interesting questions…

Thank you… 

              どうもありがとうございます

Final slide


