A new perspective on thermal transition in QCD

Hiromasa Watanabe (渡辺 展正)

In collaboration with M. Hanada(Queen Mary, U. London), H. Ohata, H. Shimada(YITP)

[arXiv:2310.01940] (& long ver. [arXiv:2310.07533])

2023/11/29 @KEK Theory Workshop 2023

Introduction

[Hanada, Maltz, (2016) / Berenstein, (2018) / Hanada, Ishiki, HW, (2018) / Hanada, Jevicki, Peng, Wintergerst, (2019) / …]

Ultimate goal :

Understanding deconfinement in gauge theories (at finite temperature) (for phases of QCD matter, AdS/CFT correspondence, …)

Large-N deconfinement exhibits a phenomenon called partial deconfinement;

• Interpreted as the coexistence of confined/deconfined sectors in the space of color dof.

 \rightarrow only some modes can be excited (i.e., deconfined)

- Possible to occur in a broad class of large-N QFTs e.g.) [Hanada, HW, (2023)] as a review
- Applicable to finite-N theories, such as SU(N=3) QCD?

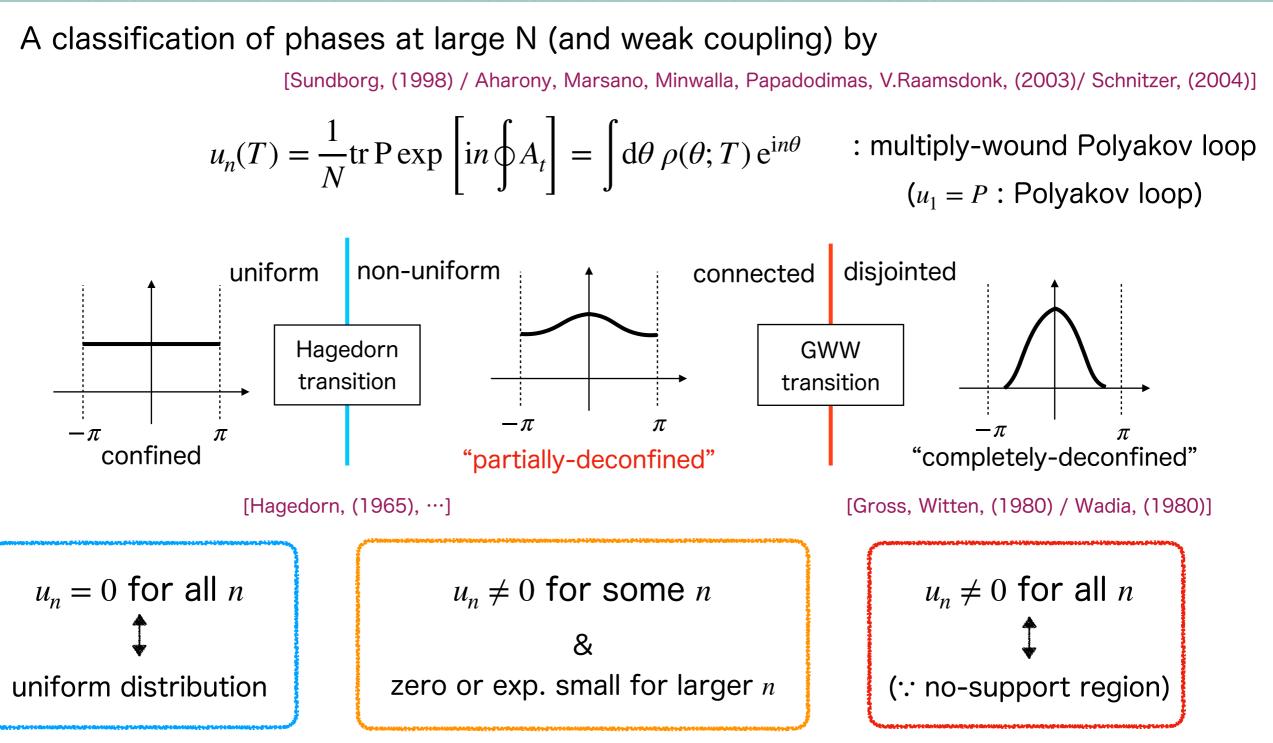
- An investigation on lattice QCD configurations ← this work!!

Contents

- Introduction
- Brief look at partial deconfinement
- Numerical analysis on lattice QCD configurations
- Summary & Prospects

Intermediate phase at large N

[Hanada, Ishiki, HW, (2018) / …]



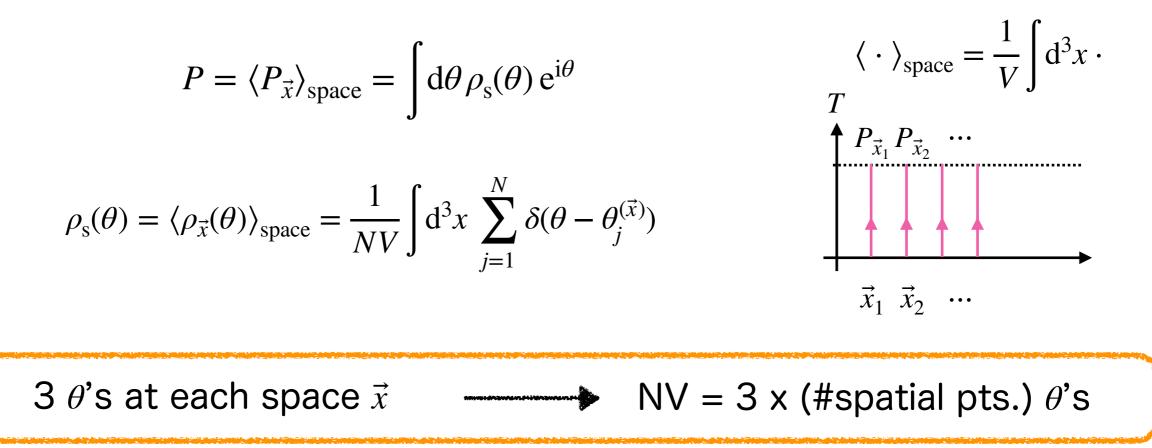
: characterization as a phenomenon in which only some modes are excited

With finite N & infinite Volume

[Hanada, Ohata, Shimada, HW, (2023)]

How do we apply the large-N description to finite-N theory (QCD)? (QCD : 4d SU(N=3) gauge theory w/ N_f fundamental fermion)

Key observation : utilize the spatial extent at finite N (assuming homogeneity)



Let's apply the picture to analyses of lattice QCD!

Contents

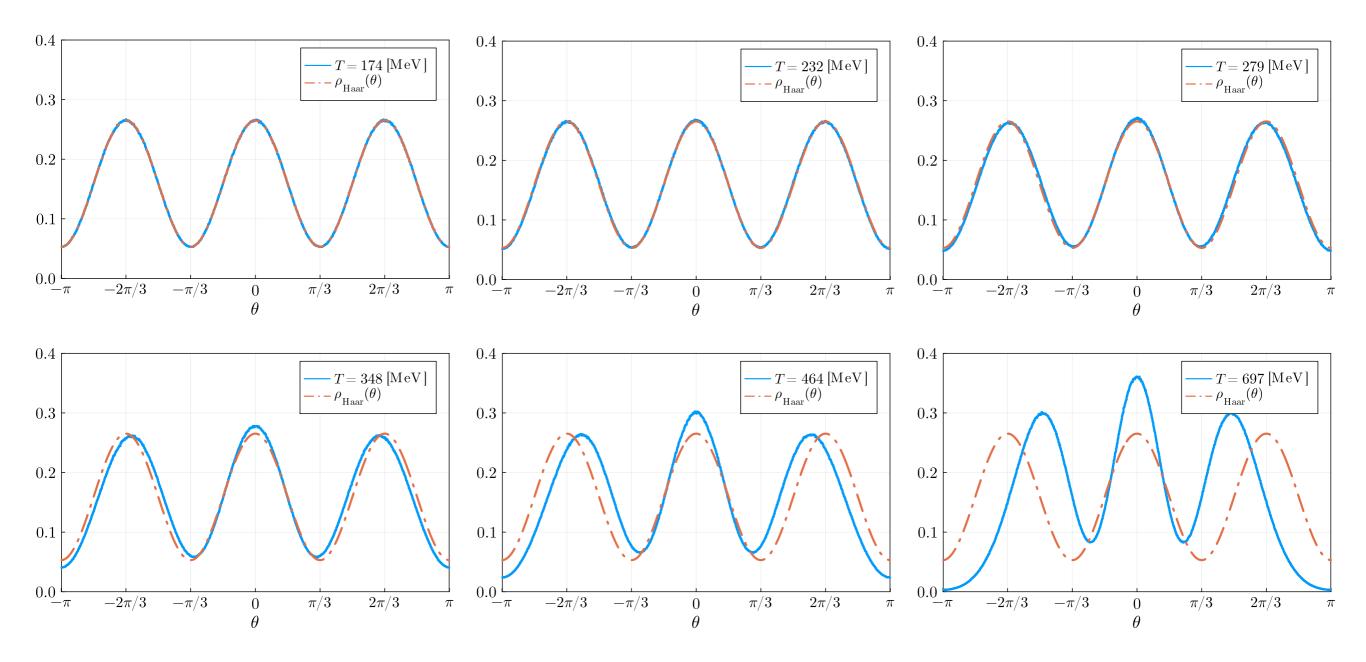
- Introduction
- Brief look at partial deconfinement
- Numerical analysis on lattice QCD configurations
- Summary & Prospects

Profile of lattice QCD configuration

Gauge configuration by WHOT-QCD collaboration [Phys. Rev. D. 85, 094508 (2012)]

- $N_f = 2 + 1$, RG-improved Iwasaki gauge + NP O(a)-improved Wilson quarks
 - T = 0 config. of CP-PACS & JLQCD collaboration [Phys. Rev. D. 78, 011502 (2008)]
- $\beta = 2.05$, $a^{-1} = 2.79$ GeV, $(a \simeq 0.07 \text{ fm})$
- $32^3 \times n_t$ lattice with $n_t = 4, 6, \dots, 16$ ($T \simeq 174, 199, \dots, 697$ MeV)
- $m_{\pi}/m_{\rho} \simeq 0.63$: heavy quark
- $T_{\rm pc} \approx 190 {\rm ~MeV}$

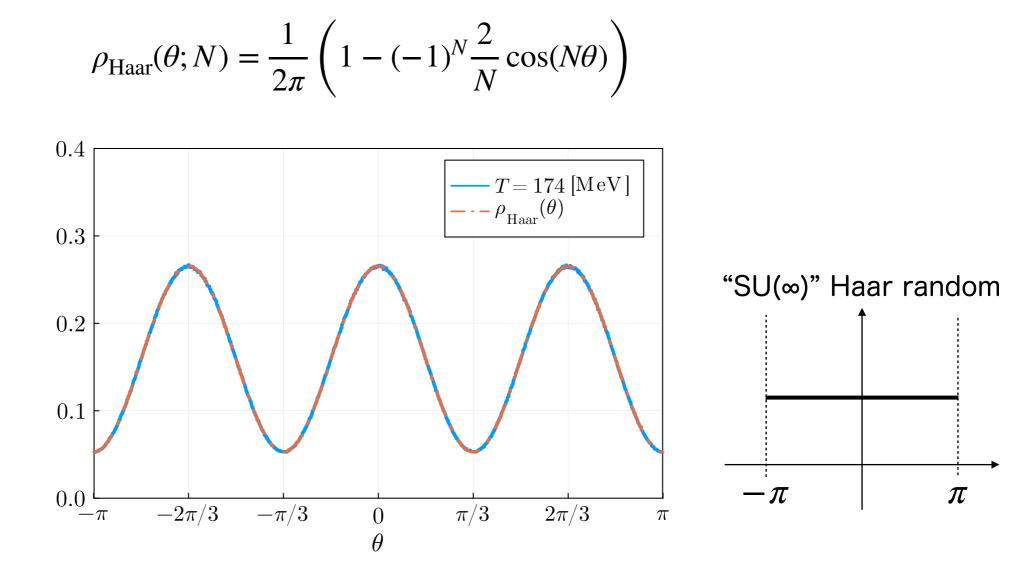
Phase distribution $\rho(\theta; T)$



Deviation from a distribution becomes visible as raising the temperature.

Haar randomness

The uniform distribution at large N \rightarrow SU(N) Haar-random distribution

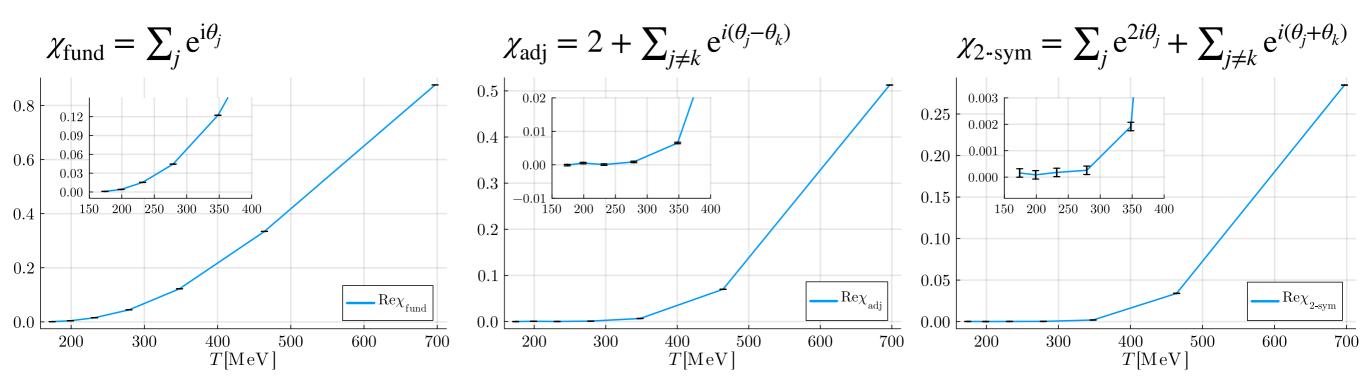


- Almost-random SU(3) matrix lives on lattice sites c.f. [Polyakov, (1975)/(1978)]
- Deviation from $\rho_{\text{Haar}}(\theta)$ is quantified by characters $\chi_r(\{\theta\})$ (discussed later)

Characters & Polyakov loops

Characters have a clearer physical meaning;

• Discriminable which degrees of freedom (: representation) are excited.



 χ_r 's other than χ_{fund} start to depart at different *T* above 348 MeV ($\simeq 2T_{pc}$) \rightarrow a supporting evidence of the presence of an intermediate region

Characters & Polyakov loops

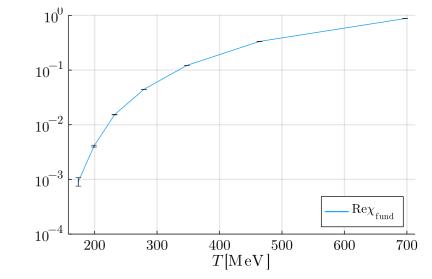
Characters have a clearer physical meaning;

• Functions on group mfd. can be expanded by them (c.f. Peter-Weyl theorem)

$$\rho(\{\theta\}) = \sum_{r} \rho_r \chi_r(\{\theta\}) = \rho_{\text{Haar}}(\{\theta\}) + \sum_{r \neq \text{trivial}} \rho_r \chi_r(\{\theta\}),$$

• $\langle \chi_{\rm fund} \rangle_{\rm space} \sim {\rm e}^{-m/T}$ w/ some mass gap

(It may correspond to hadron gas excitation.)



Polyakov loop $P \propto \chi_{\text{fund}}$ is responsible to deviation from $\rho_{\text{Haar}}(\theta)$ at low-T

Contents

- Introduction
- Brief look at partial deconfinement
- Numerical analysis on lattice QCD configurations
- Summary & Prospects

Summary & Prospects

- Deconfinement transition is intriguing from several viewpoints.
 - In large N theories at finite T, a nontrivial intermediate phase appears.
- Valuable concept for QCD w/ quarks (unveiled by WHOT-QCD lattice configs.)
 - Haar-random distribution $\rho_{\text{Haar}}(g)$ is characteristic at low temperatures.
 - Intermediate regions appear, determined by the deviation from $\rho_{\text{Haar}}(g)$.
 - Haar randomness yields stronger condition than center symmetry.
 - As a relation to other QCD scale, the instanton condensation fits nicely.
- Further investigation on QCD (and pure YM).
 - Checking other observables, such as correlators c.f.) [Bergner, Gautam, Hanada, (2023)]
 - Simulations w/ finer lattice along T, at physical point.
- Revisiting the quantum gravity with the technique of characters

c.f.) [Berenstein, Yan, (2023)]

Backup

Viewpoint from characters

Good basis : characters (i.e., Polyakov loops in representation r, Schur polynomial)

 $\chi_r(g) = \operatorname{tr} R_r(g)$ $R_r(g)$: Representation matrix of rep. r

 $g \in G = SU(3)$: holonomy (~Polyakov line $e^{i\Theta}$)

- Orthonormality $\frac{1}{\text{Vol}(G)} \int_{G} dg \, \bar{\chi}_{r}(g) \chi_{r'}(g) = \delta_{rr'} \qquad (r, r': \text{irreducible rep.})$
- Functions on G can be expanded by the characters (: Peter-Weyl theorem)

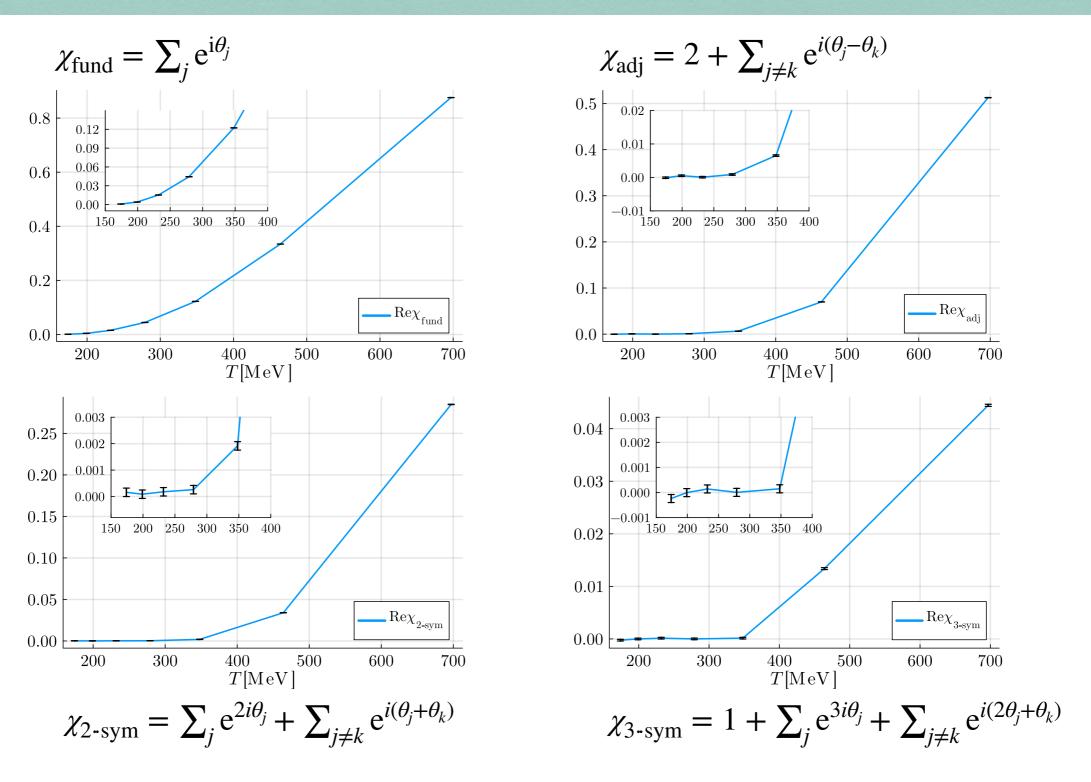
P(g): distribution function

 $=\chi_r(\{\theta\})$

$$1 = \frac{1}{\operatorname{Vol}(G)} \int dg \,\rho(g) \qquad \qquad \rho(g) = \sum_{r} \rho_r \chi_r(g), \qquad \chi_{\operatorname{trivial}}(g) = 1$$

Haar random; $\rho(g)$: constant (uniform distrib.) <=> $\rho_r = \begin{cases} 1 & r : \text{trivial} \\ 0 & r : \text{otherwise} \end{cases}$

Numerical results of characters



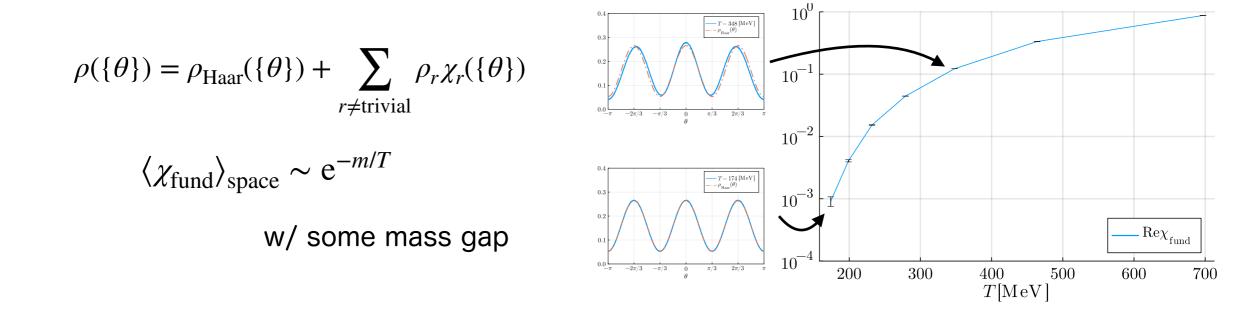
Latter 3 χ_r 's start to depart at different *T* above 348 MeV ($\simeq 2T_{pc}$)

Characters & Polyakov loops

• For
$$u_{n\neq 3}$$

$$P = u_1 \propto \chi_{\text{fund}} \qquad u_2 \propto \chi_{2-\text{sym}} - \chi_{\text{fund}}^* \qquad u_4 \propto \chi_{4-\text{sym}} - \chi_{\text{fund}} + \chi_{\text{fund}} \qquad \cdots$$

P is sensitive at low-T to the deviation from Haar random



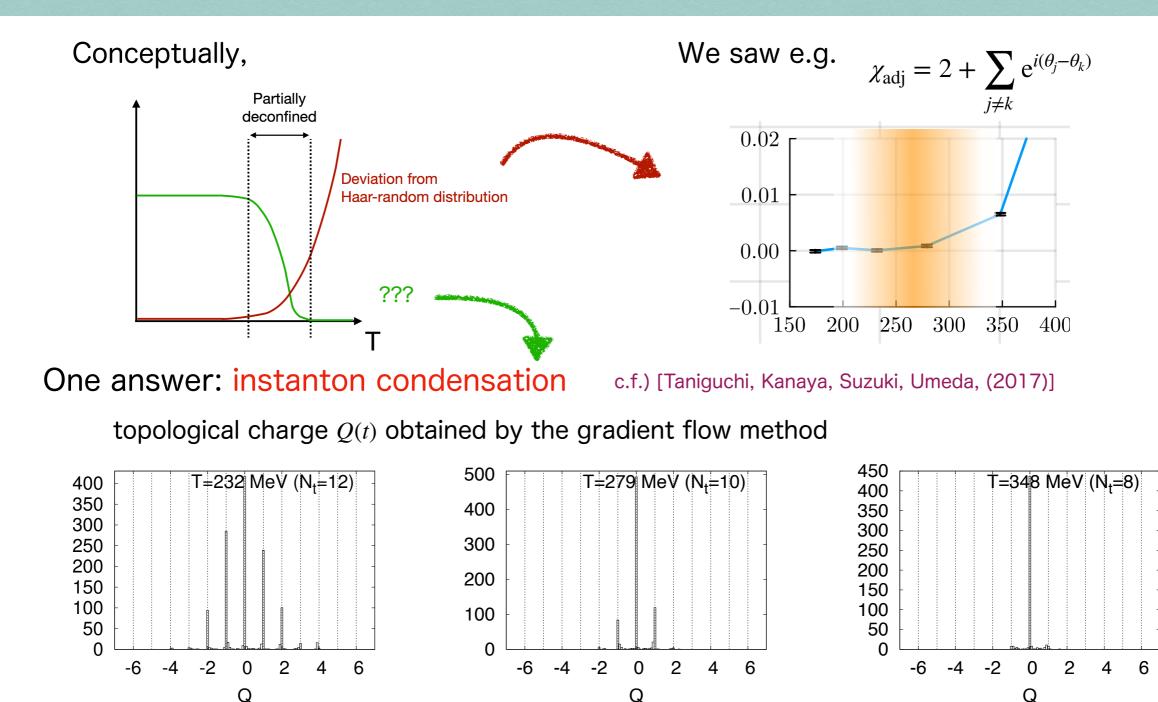
• From orthonormality,

17 / 13

$$\frac{1}{\operatorname{Vol}(G)} \int_{G} \mathrm{d}g \, u_n(g) = \frac{1}{\operatorname{Vol}(G)} \int_{G} \mathrm{d}g \, \chi_{\operatorname{trivial}}(g) u_n(g) = \frac{\delta_{n,3}}{3} \qquad : \text{Only } u_3 \text{ contains } \chi_{\operatorname{trivial}}(g) u_n(g) = \frac{\delta_{n,3}}{3}$$

 \rightarrow stronger than the center symmetry

Relation to typical scale in QCD



• Consistent picture with large-N model analyses

18 / 13

- Nontrivial properties have been recognized in $T_{\rm c} \leq T \lesssim 3T_{\rm c}$

[Asakawa, Hatsuda, (1997)] [Glozman, (2023), …]

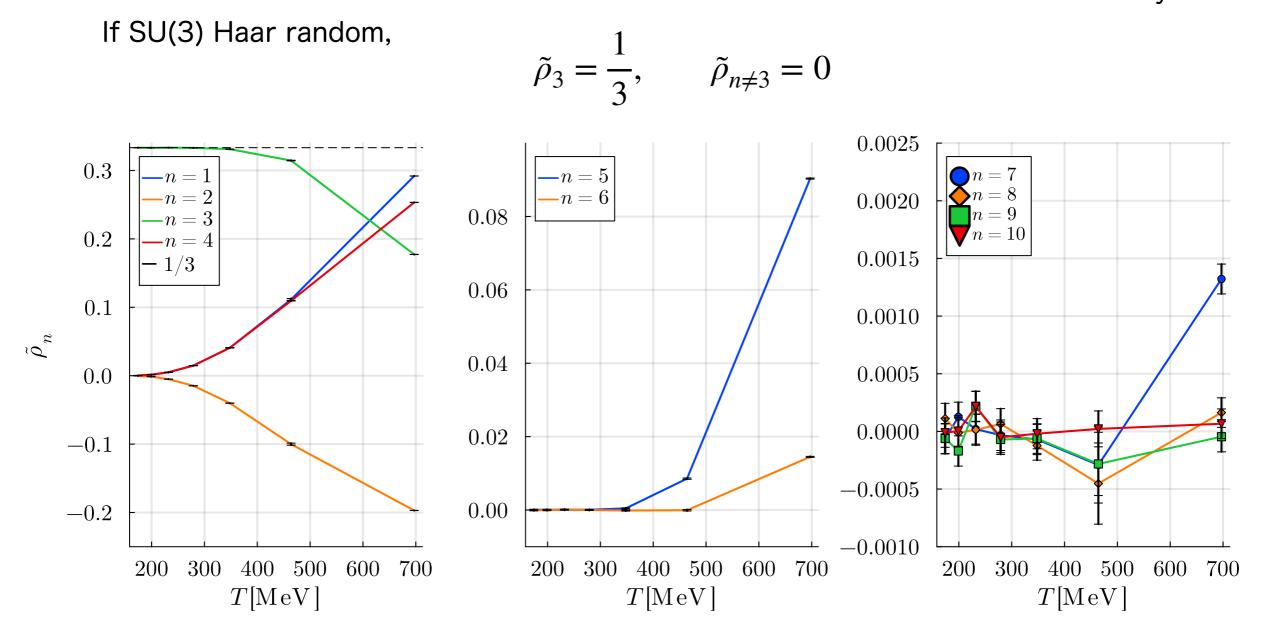
[Buividovich, Dunne, Valgushev, (2017)]

[Hanada, Holden, Knaggs, O'Bannon, (2021)]

KEK Theory Workshop 2023

n-wound Polyakov loops

$$\tilde{\rho}_{n} := \langle u_{n} \rangle_{\text{space}} = \frac{1}{N} \left\langle \text{tr P} \exp\left[in \oint A_{t}(x)\right] \right\rangle_{\text{space}} = \int d\theta \,\rho_{s}(\theta) \, e^{in\theta}$$
: n-wound Polyakov loops



 $\tilde{\rho}_n$ starts to depart at different temperatures \rightarrow nontrivial intermediate region 19 / 13 KEK Theory Workshop 2023