

Giant graviton expansions for $\mathcal{N} = 2$ SCFTs

arXiv: 2310.03332

In collaboration with Y. Imamura, T. Mori, S. Fujiwara and D. Yokoyama

Shuchi Murayama

2023/11/29

Tokyo Institute of Technology

Abstract

Giant graviton expansions of superconformal indices gives the finite rank corrections via AdS/CFT correspondence. We apply and check the relation for $\mathcal{N} = 2$ superconformal field theories constructed on 7-brane background.

Introduction

Superconformal Index

Tokyo Tech

We calculate the superconformal index (SCI).

Superconformal Index(SCI)

- Partition function counts only BPS states.
- Independent of coupling constant $\left(\frac{dl}{dg}=0\right)$

[Römelsberger('05)][Kinney,Maldacena,Minwalla,Raju('05)]

We consider 4d $\mathcal{N} = 4$ superconformal field theory (SCFT) w/ $SO(4)_{j_1,j_2} \times SO(6)_{R_x,R_y,R_z}$ sym.

Definition of SCI

$$I(q, p, x, y, z) := tr[(-1)^F q^{j_1} p^{j_2} x^{R_x} y^{R_y} z^{R_z}] \quad (qp = xyz)$$

we take $(q, p, x, y, z) \rightarrow (tz^{\frac{1}{2}}, tz^{\frac{1}{2}}, t, t, z)$ for simplicity.

2d Plot

We denote the numerical results of SCI as the 2d plot,

 n_z (order of z) - n_t (order of t).

$$I_{U(1)} = (1 + z + z^2 + \cdots) + t(2 - 2z^{\frac{1}{2}}) + t^2(2 - 3z + \cdots) + \cdots$$

Index and AdS/CFT correspondence

The correspondence of SCIs of the AdS side and of the CFT side in the large N limit is known for a long time. [Kinney et. al. ('05)]

In the large N limit, we can calculate the SCI of the AdS side as classical SUGRA.

Relation for SCIs between AdS/CFT Correspondence

 $I_{U(N=\infty)}(t,z) = I_{SUGRA}(t,z)$

₼

Tokvo Teci

Giant Graviton

In finite N region, we must consider the contribution of giant graviton (GG) as finite N correction. [Arai,Imamura('19)]

$$I_{U(N)} = I_{SUGRA}(1 + \cdots)$$

Giant Graviton(GG)

The D3-branes wrapping 3-cycle on the compact space

CFT side: determinant operators [Gaiotto,Lee('21)]

Index of Giant Gravitons

We can separate the SCI into two factors:

- 1. GG wrapped on great circle Z = 0
- 2. Fluctuation = CFT on GG

Equivalent to the boundary CFT.

► $z \rightarrow z^{-1}$

The volume becomes smaller.

► $t \rightarrow tz^{\frac{1}{2}}$ $(q, p \leftrightarrow x, y)$ so(4)_{j₁,j₂} and so(4)_{R_x,R_y} charges are exchanged

Index of n GGs

$$\underline{z^{nN}}I_{U(n)}(tz^{\frac{1}{2}},z^{-1})$$

Giant Graviton Expansion

With the GGs, the SCI with finite N region is given in the AdS side:

[Gaiotto,Lee('21)][Imamura('22)]

Giant Graviton Expansion

$$\underbrace{I_{U(N)}(t,z)}_{n=0} = I_{U(\infty)}(t,z) \sum_{n=0}^{\infty} z^{nN} I_{U(n)}(tz^{\frac{1}{2}}, \frac{1}{z})$$

$$1 + \underbrace{1}_{n=0} + \underbrace{1}_{n=2} + \underbrace{1}_{n=3} + \cdots$$

The same function $I_{U(N)}$ emerges on both sides.

If the GG expansion holds, the plot will vanish as we gradually add the contributions of GGs.

 $I_{U(N)}(t,z) - I_{U(\infty)}(t,z)$

If the GG expansion holds, the plot will vanish as we gradually add the contributions of GGs.

$$I_{U(N)}(t,z) - I_{U(\infty)}(t,z) \sum_{n=0}^{1} z^{nN} I_{U(n)}(tz^{\frac{1}{2}},\frac{1}{z})$$

If the GG expansion holds, the plot will vanish as we gradually add the contributions of GGs.

$$I_{U(N)}(t,z) - I_{U(\infty)}(t,z) \sum_{n=0}^{2} z^{nN} I_{U(n)}(tz^{\frac{1}{2}},\frac{1}{z})$$

If the GG expansion holds, the plot will vanish as we gradually add the contributions of GGs.

$$I_{U(N)}(t,z) - I_{U(\infty)}(t,z) \sum_{n=0}^{3} z^{nN} I_{U(n)}(tz^{\frac{1}{2}},\frac{1}{z})$$

The expansion correctly reproduces the SCI.

Our Work

The relation of giant graviton expansion is satisfied for other theories.

In this talk, we propose the giant graviton expansion for $\mathcal{N}=2$ SCFTs:

Giant Graviton Expansion for $\mathcal{N}=2~\text{SCFTs}$

$$I_{G[N]}(t,z) \stackrel{!}{=} I_{G[\infty]}(t,z) \sum_{n=0}^{\infty} z^{\frac{2}{2-\alpha_G}nN} I_{G[n]}(tz^{\frac{1}{2}},\frac{1}{z})$$

and we checked it works by summing a few GGs ($n \leq 3$).

Expansion for $\mathcal{N}=2$ SCFT

D3 & 7-brane System

Some specific N = 2 superconformal field theory G[N] exist on N D3-branes with the backgroud: [Aharony et al.(1998)]

- Deficit angle $\pi \alpha_G$ on Z
- 7-brane with global symmetry *G*

	0	1	2	3	X	Y	Ζ
D3	\checkmark	\checkmark	\checkmark	\checkmark			
7	√	\checkmark	\checkmark	\checkmark	11	$\checkmark\checkmark$	

$\left[\right]$	7 series	s of C		
	Туре	α_{G}	G	Theory
	H ₀	$\frac{1}{3}$	None	•
	H_1	$\frac{1}{2}$ A_1		Argyres- Douglas
	H_2	$\frac{\overline{2}}{\overline{3}}$	A_2	Douglas
	D ₄	1	D ₄	Sp(N)
	E_6	$\frac{4}{3}$	E_6	
	E_7	$\frac{3}{2}$	E_7	Minahan- Nemeschnsky
	E_8	<u>5</u> 6	E_8	

AdS/CFT Correspondence for $\mathcal{N} = 2$ SCFTs

We mainly consider $D_4[N]$ since we can calculate SCIs easily:

- **CFT:** Sp(N) gauge theory
- AdS: Orientifold theory w/ O7& D7s

Giant Graviton Expansion for $\mathcal{N} = 2$ SCFT

Similar to $\mathcal{N} = 4 U(N)$ SYM, the SCI in finite N region should be given through the giant graviton expansion:

Giant Graviton Expansion for $\mathcal{N} = 2$ SCFTs

$$\frac{I_{G[N]}(t,z)}{1+\sum_{n=0}^{\infty}I_{G[\infty]}(t,z)\sum_{n=0}^{\infty}z^{\frac{2}{2-\alpha_{G}}nN}I_{G[n]}(tz^{\frac{1}{2}},\frac{1}{z})}{1+\sum_{n=1}^{\infty}I_{G[\infty]}(tz^{\frac{1}{2}},\frac{1}{z})}$$

 $(D_4: \alpha_G = 1)$

The corrections from single-wrapping GG are already calculated. [SM,Imamura('21)]

Numerical Test

Numerical Test for $D_4[1]$

$$I_{D_4[1]}(t,z) - I_{D_4[\infty]}(t,z)$$

20 / 28

Numerical Test for $D_4[1]$

$$I_{D_4[1]}(t,z) - I_{D_4[\infty]}(t,z) \sum_{n=1}^{1} z^{2n} I_{D_4[n]}(tz^{\frac{1}{2}},\frac{1}{z})$$

Tokyo Tech

Numerical Test for $D_4[1]$

$$I_{D_4[1]}(t,z) - I_{D_4[\infty]}(t,z) \sum_{n=1}^{2} z^{2n} I_{D_4[n]}(tz^{\frac{1}{2}},\frac{1}{z})$$

Numerical Test for $D_4[1]$

The relation of GG expansion also holds.

Introduction Expansion for $\mathcal{N} = 2$ SCFT Numerical Test

Future Work: Numerical Trial for $H_0[1]$

We considered the GG expansion for $H_0[1]$ (Argyres-Douglas theories), guessing the SCI $I_{H_0[n \ge 2]}$.

$$I_{H_0[1]}(t,z) - I_{H_0[\infty]}(t,z)$$

24 / 28

Introduction Expansion for $\mathcal{N} = 2$ SCFT Numerical Test

Future Work: Numerical Trial for $H_0[1]$

$$I_{H_0[1]}(t,z) - I_{H_0[\infty]}(t,z) \sum_{n=1}^{1} I_{H_0[n]}(tz^{\frac{1}{2}},\frac{1}{z})$$

Introduction Expansion for $\mathcal{N} = 2$ SCFT Numerical Test

Future Work: Numerical Trial for $H_0[1]$

We considered the GG expansion for $H_0[1]$ (Argyres-Douglas theories), guessing the SCI $I_{H_0[n \ge 2]}$.

$$I_{H_0[1]}(t,z) - I_{H_0[\infty]}(t,z) \sum_{n=1}^{2} I_{H_0[n]}(tz^{\frac{1}{2}},\frac{1}{z})$$

Summary

- The superconformal index is a physical quantity similar to the partition function, counting up only BPS states.
- The relation between the SCIs for the CFT and the AdS sides is described as the giant graviton expansion.
- The giant graviton expansion is also satisfied other than $\mathcal{N} = 4 \ U(N)$ SYM, such as $\mathcal{N} = 2$ SCFT.
- Calculating the SCI of H_0 up higher-order with giant graviton expansion remains a future work.

In addition, we can use GG expansion to

- $AdS_4 \times S^7$, $AdS_7 \times S^4$ (M-theory)
- $AdS_5 \times S^5/\mathbb{Z}_k$
- O3-D3 system ($AdS_5 imes S^5/\mathbb{Z}_2+$ orientifold)

and so on. . . [SM,Imamura,Mori,Fujiwara,Yokoyama('23)]

Thank you for listening

AD& MN

The other theories belong to ...

- H_0 , H_1 , H_2 : Argyres-Douglas(AD) theories
- E_6 , E_7 , E_8 : Minahan-Nemeschansky(MN) theories.

Argyres-Douglas and Minahan-Nemeschansky Theories

Specific 4d $\mathcal{N}=2$ strong-coupled SCFT

- They sometimes emerge in IR limits of supersymmetric gauge or superstring theories.
 - ► 4d supersymmetric gauge theories [Argyres, Douglas('95)]
 - M-theory [Xie('12),Gaiotto('12)]
- Except for a few theories, their Lagrangians are unknown.

GG expansion for AD and MN theories

Except for D_4 theories, we do not know the SCIs completely.

It is difficult to calculate the fluctuations in GG expansion...

$$\frac{I_{H_0[N]}}{I_{H_0[\infty]}}(t,z) = 1 + z^{\frac{6}{5}N} I_{H_0[1]}(tz^{\frac{1}{2}},\frac{1}{z}) + \frac{z^{\frac{12}{5}N} I_{H_0[1]}(tz^{\frac{1}{2}},\frac{1}{z}) + \cdots$$

We guessed the SCI of $H_0[n]$ from $D_4[N]$ and $H_0[1]$ theories up to t^2 .