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Introduction

H.B.Nielsen, M.Ninomiya, Proc. Bled 2006, p.87

Complex action theory (CAT)⇐ Extension of quantum theory
• coupling parameters are complex
• in Feynman path integral, measure is path-dependent.
• corresponding Hamiltonian is non-normal.

* PT symmetric Hamiltonian : Bender and Boettcher etc.

It would be nice if we could remove a constraint of an action being
real. ⇐ One of the benefits
Less constraints, more fundamental.

Expected to give natural initial states⇐ One of the benefits
⇒Falsifiable predictions have been intensively studied by
H. B. Nielsen and M. Ninomiya



Four types of quantum theory

Quantum theory can be classified into four types, according to
whether its action is real or not, and whether the future is included
or not.

Table: Four types of quantum theory.

Real action Complex action
Future not included FNI RAT FNI CAT
Future included FI RAT FI CAT

* Complex action suggests future-included theory

KN and H.B.Nielsen, PTEP 2017 111B01



The future-not-included theory

Usual quantum theory is defined with a given past state |A(TA)⟩ at
the initial time TA, which time-develops forward as

iℏ
d
dt
|A(t)⟩ = Ĥ|A(t)⟩.

The expectation value of Ô is given by ⟨Ô⟩AA =
⟨A(t)|Ô|A(t)⟩
⟨A(t)|A(t)⟩ .

* Eat right, future bright.

⇒We call this theory “future-not-included” theory.



The future-included theory

H.B.Nielsen, M.Ninomiya, Proc. Bled 2006, p.87

We can consider another theory, “future-included” theory, in which
not only a past state |A(TA)⟩ at the initial time TA, but also a future
state |B(TB)⟩ at the final time TB is given:

iℏ
d
dt
|A(t)⟩ = Ĥ|A(t)⟩, −iℏ

d
dt
⟨B(t)| = ⟨B(t)|Ĥ,

where Ĥ is non-normal.

The normalized matrix element ⟨Ô⟩BA ≡ ⟨B(t)|Ô|A(t)⟩
⟨B(t)|A(t)⟩ is expected to

work as an “expectation value” of Ô.

* ⟨Ô⟩BA is called the weak value in the real action theory (RAT).

Y. Aharonov, D. Z. Albert, L. Vaidman, Phys. Rev. Lett. 60 (1988)
pp.1351-1354



KN, H.B.Nielsen, PTEP 2013 023B04

If we regard ⟨Ô⟩BA as an expectation value in the future-included
theory, then, utilizing d

dt ⟨O⟩BA = ⟨ i
ℏ [Ĥ,O]⟩BA, we obtain

• Heisenberg equation
• Ehrenfest’s theorem:

d
dt
⟨q̂new⟩BA =

1
m
⟨ p̂new⟩BA,

d
dt
⟨p̂new⟩BA = −⟨V ′(q̂new)⟩BA.

* momentum relation p = mq̇
KN, H.B.Nielsen, IJMP A27(2012) 1250076;Erratum-ibid,

A32(2017) 1792003
* complex coordinate and momentum formalism

KN, H.B.Nielsen, PTP126 (2011)102
• Conserved probability current density

⇒ ⟨Ô⟩BA seems to play the role of an expectation value in the
future-included theory. However, ⟨Ô⟩BA is complex in general.



Difference of the philosophies

⟨Ô⟩BA ≡ ⟨B(t)|Ô|A(t)⟩
⟨B(t)|A(t)⟩

Theory of Our theory
Aharonov et.al.

mainly experiments whole universe
interested in in laboratories
look at the path s.t. small large
|⟨B(t)|A(t)⟩| is
because amplification less conditions,
of of detection natural initial states

Our philosophy:
our universe could be realized by a path (including initial and final
conditions) selected from a superposition of many possible paths
of our universe that are given randomly.



Modified inner product for Ĥ

KN and H.B.Nielsen, PTP 125(2011)633

Ĥ|λi⟩ = λi|λi⟩

|λi⟩ : eigenstates of Ĥ, but not orthogonal in the usual inner product
I(|λi⟩, |λ j⟩) ≡ ⟨λi|λ j⟩ , δi j.
λi(i = 1, . . .) : complex

Ĥ = PDP−1,

where P = (|λ1⟩, |λ2⟩, . . .), D = diag(λ1, λ2, . . . )

Let us considr a transition from |λi⟩ to |λ j⟩ (i , j) fast in time ∆t

|I(|λ j⟩, exp
(
− i
ℏ Ĥ∆t

)
|λi⟩)|2 , 0,

since ⟨λi|λ j⟩ , 0, even though Ĥ cannot bring the system from |λi⟩
to |λ j⟩ (i , j).
⇒ Such a transition should be prohibited.



We define IQ(| f ⟩, |i⟩) ≡ ⟨ f |Q i⟩ ≡ ⟨ f |Q|i⟩ s.t. IQ(|λi⟩, |λ j⟩) = δi j, and
impose ⟨ψ1(t)|Qψ2(t)⟩ = ⟨ψ2(t)|Qψ1(t)⟩∗ → Q† = Q

Also, we define †Q for
• any operator A: ⟨ψ2|QA|ψ1⟩∗ = ⟨ψ1|QA†Q |ψ2⟩ → A†Q = Q−1A†Q
• kets and bras: |ψ1⟩†Q ≡ ⟨ψ1|Q,

(⟨ψ2|Q
)†Q ≡ |ψ2⟩

When A satisfies A†Q = A, we call A Q-Hermitian.
We choose Q as Q = (P†)−1P−1.

* Ĥ is Q-normal: [Ĥ, Ĥ†Q] = [ĤQh, ĤQa] = 0

Ĥ = ĤQh + ĤQa, ĤQh ≡
Ĥ + Ĥ†Q

2
, ĤQa ≡

Ĥ − Ĥ†Q

2
.

* A similar inner product is studied also in F. G. Scholtz, H. B.
Geyer and F. J. W. Hahne, Ann. Phys. 213 (1992) 74,
A. Mostafazadeh, J.Math.Phys.43, 3944 (2002).



Automatic hermiticity mechanism for pure states

KN and H.B.Nielsen, PTP 125(2011)633

If the anti-Hermitain part of H is bounded from above, then H
effectively becomes Hermitian with
• the modified inner product
• a long time development

(Only the modes belonging to the subspace with the maximal Imλi

dominate )



Let us consider a state |Ai(t)⟩, which obeys the Schrödinger eq.

iℏ
d
dt
|Ai(t)⟩ = Ĥ|Ai(t)⟩. (1)

A normalized state |Ai(t)⟩N ≡ 1√
⟨Ai(t)|Q Ai(t)⟩

|Ai(t)⟩ and an expectation

value of an operator Ô, ⟨Ô⟩AiAi
Q (t) ≡ N⟨Ai(t)|QÔ|Ai(t)⟩N , obey

iℏ
∂

∂t
|Ai(t)⟩N = ĤQh|Ai(t)⟩N + ∆̂

(
ĤQa; |Ai(t)⟩N

)
|Ai(t)⟩N ,

d
dt
⟨Ô⟩AiAi

Q (t) = − i
ℏ
⟨
[
Ô, ĤQh

]
⟩AiAi

Q (t) − i
ℏ
⟨
{
Ô, ∆̂
(
ĤQa; |Ai(t)⟩N

)}
⟩AiAi

Q (t),

where ∆̂
(
ĤQa; |Ai(t)⟩N

)
≡ ĤQa − N⟨Ai(t)|QĤQa|Ai(t)⟩N .

It is intriguing that, in the classical limit, ⟨Ô⟩AiAi
Q (t) seems to

time-develop by ĤQh, and Ehrenfest’s theorem holds.

We will see the emergence of the Q-hermiticity even before
considering the classical limit if we consider a long time
development.



Expanding |Ai(t)⟩ as |Ai(t)⟩ =
∑

j a(i)
j (t)|λ j⟩ and introducing

|A′i(t)⟩ = P−1|Ai(t)⟩ =
∑

j a(i)
j (t)|e j⟩, which obeys

iℏ d
dt |A′i(t)⟩ = D|A′i(t)⟩, we obtain

|Ai(t)⟩ = Pe−
i
ℏD(t−t0)|A′i(t0)⟩ = ∑ j a(i)

j (t0)e
1
ℏ (Imλ j−iReλ j)(t−t0)|λ j⟩.

Imagine that some of Imλ j take the maximum value B (the
corresponding subset of { j} ≡ A )

If a long time has passed, i.e. for large t − t0, the states with
Imλ j| j∈A contribute most in the sum



We introduce a diagonalized Hamiltonian D̃R :

⟨e j|D̃R|ek⟩ ≡
{
⟨e j|DR|ek⟩ = δ jkReλ j for j ∈ A

0 for j < A

Heff ≡ PD̃RP−1 obeys H†Q

eff = Heff, Heff|λi⟩ = Reλi|λi⟩

We also introduce |Ãi(t)⟩ ≡
∑

j∈A a(i)
j (t)|λ j⟩.

Then |Ai(t)⟩ is evaluated as

|Ai(t)⟩ ≃ e
1
ℏ B(t−t0)

∑
j∈A

a(i)
j (t0)e−

i
ℏReλ j(t−t0)|λ j⟩

= e
1
ℏ B(t−t0)e−

i
ℏ Ĥeff(t−t0)|Ãi(t0)⟩ = |Ãi(t)⟩

We have effectively obtained a Q-hermitian Hamiltonian Heff after a
long time passed.



The normalized state |Ai(t)⟩N ≃ |Ãi(t)⟩N ≡ 1√
⟨Ãi(t)|Q Ãi(t)⟩

|Ãi(t)⟩ and

the expectation value of an operator O,
⟨Ô⟩AiAi

Q (t) ≃ ⟨Ô⟩ÃiÃi
Q (t) ≡ N⟨Ãi(t)|QO|Ãi(t)⟩N , obey

iℏ
∂

∂t
|Ãi(t)⟩N = Ĥeff|Ãi(t)⟩N , (2)

d
dt
⟨Ô⟩ÃiÃi

Q (t) = − i
ℏ
⟨
[
Ô, Ĥeff

]
⟩ÃiÃi

Q (t). (3)



Density matrices for mixed states in the future-not-included CAT

For a given ensemble {|Ai(t)⟩}, let us consider a mixed state that is
composed of |Ai(t)⟩N with the probability qi for each index i (qi ≥ 0,∑

i qi = 1).

We define the density matrix and expectation value of an operator
Ô for it by

ρ̂AA,mixed
Q (t) ≡

∑
i

qi|Ai(t)⟩N N⟨Ai(t)|Q ≡
∑

i

qiρ̂
AiAi
Q (t),

⟨Ô⟩ρ̂AA,mixed
Q

(t) ≡ tr
(
ρ̂AA,mixed

Q (t)Ô
)
≡
∑

i

qi⟨Ô⟩ρ̂AiAi
Q

(t) =
∑

i

qi⟨Ô⟩AiAi
Q (t),

where ρ̂AiAi
Q (t) obeys ρ̂AiAi

Q (t)2 = ρ̂AiAi
Q (t) and tr

(
ρ̂AiAi

Q (t)
)
= 1. So

tr
(
ρ̂AA,mixed

Q (t)
)
= 1.



They time-develop as follows:

d
dt
ρ̂AA,mixed

Q (t)

= − i
ℏ

[
ĤQh, ρ̂

AA,mixed
Q (t)

]
− i
ℏ

∑
i

qi
{
∆̂
(
ĤQa; |Ai(t)⟩N

)
, ρ̂AiAi

Q

}
(t),

d
dt
⟨Ô⟩ρ̂AA,mixed

Q
(t)

= − i
ℏ
⟨
[
Ô, ĤQh

]
⟩ρ̂AA,mixed

Q
(t) − i

ℏ

∑
i

qi⟨
{
Ô, ∆̂
(
ĤQa; |Ai(t)⟩N

)}
⟩
ρ̂

AiAi
Q

(t).

It is interesting that, in the classical limit, since
⟨
{
Ô, ∆̂
(
ĤQa; |Ai(t)⟩N

)}
⟩
ρ̂

AiAi
Q

(t) is suppressed, Ehrenfest’s theorem

holds.



Now, let us consider the long time development. Then, since
|Ai(t)⟩N ≃ |Ãi(t)⟩N obeys Eq.(2), we obtain the following relations for
ρ̂AA,mixed

Q (t) ≃ ρ̂ÃÃ,mixed
Q (t), ρ̂AiAi

Q (t) ≃ ρ̂ÃiÃi
Q (t),

⟨Ô⟩ρ̂AA,mixed
Q

(t) ≃ ⟨Ô⟩
ρ̂ÃÃ,mixed

Q
(t), and ⟨Ô⟩

ρ̂
AiAi
Q

(t) ≃ ⟨Ô⟩
ρ̂

Ãi Ãi
Q

(t):

ρ̂ÃÃ,mixed
Q (t) ≡

∑
i

qiρ̂
ÃiÃi
Q (t) = Ûeff(t − TA)ρ̂ÃÃ,mixed

Q (TA)Ûeff(t − TA)†
Q
,

⟨Ô⟩
ρ̂ÃÃ,mixed

Q
(t) ≡ tr

(
ρ̂ÃÃ,mixed

Q (t)Ô
)
≡
∑

i

qi⟨Ô⟩
ρ̂

Ãi Ãi
Q

(t) =
∑

i

qi⟨Ô⟩ÃiÃi
Q (t),

d
dt
ρ̂ÃÃ,mixed

Q (t) = − i
ℏ

[
Ĥeff, ρ̂

ÃÃ,mixed
Q (t)

]
,

d
dt
⟨Ô⟩

ρ̂ÃÃ,mixed
Q

(t) = − i
ℏ
⟨
[
Ô, Ĥeff

]
⟩
ρ̂ÃÃ,mixed

Q
(t),

where Ûeff(t − TA) ≡ e−
i
ℏ Ĥeff(t−TA) is Q-unitary, U†

Q

eff = U−1
eff .

We find that ρ̂ÃÃ,mixed
Q (t) obeys the von Neumann eq. with the

Q-Hermitian Hamiltonian Ĥeff and Ehrenfest’s theorem holds.
⇒ the automatic hermiticity mechanism works for mixed states as
well as for pure states in the future-not-included CAT.



Density matrices for mixed states in the future-included CAT

We introduce density matrices to describe mixed states in the
future-included CAT, and investigate the automatic hermiticity
mechanism for the mixed states.

The future-included theory is described not only by the state vector
|Ai(t)⟩ that time-develops forward from the initial time TA according
to the Schrödinger eq. iℏ d

dt |Ai(t)⟩ = Ĥ|Ai(t)⟩ but also by |Bi(t)⟩ that
time-develops backward from the final time TB according to
iℏ d

dt |Bi(t)⟩ = Ĥ†
Q |Bi(t)⟩ ⇔ −iℏ d

dt ⟨Bi(t)|Q = ⟨Bi(t)|QĤ.

The states |Ai(t)⟩ and |Bi(t)⟩ are normalized by
⟨Ai(TA)|QAi(TA)⟩ = ⟨Bi(TB)|QBi(TB)⟩ = 1.



The normalized matrix element

⟨Ô⟩BiAi
Q (t) ≡

⟨Bi(t)|QÔ|Ai(t)⟩
⟨Bi(t)|QAi(t)⟩

(4)

is a good candidate for an expectation value of an operator O in
the future-included CAT, because, if it is viewed as such, we can
obtain the Heisenberg eq., Ehrenfest’s theorem, and a conserved
probability current density.



Let us consider the other ensemble {|Bi(t)⟩} besides the ensemble
{|Ai(t)⟩}.
What kind of mixed states can be considered in the future-included
theory?

One possible candidate:
the same type of mixed states as we considered above, which is
described by the density matrix ρ̂AA,mixed

Q (t) for |Ai(t)⟩ and similar
ones for |Bi(t)⟩.



Introducing a normalized state and an expectation value of an
operator O for it by |Bi(t)⟩N ≡ 1√

⟨Bi(t)|Q Bi(t)⟩
|Bi(t)⟩ and

⟨Ô⟩BiBi
Q (t) ≡ N⟨Bi(t)|QO|Bi(t)⟩N , which time-develop as

iℏ ∂∂t |Bi(t)⟩N = ĤQh|Bi(t)⟩N − ∆̂
(
ĤQa; |Bi(t)⟩N

)
|Bi(t)⟩N ,

d
dt ⟨Ô⟩

BiBi
Q (t) = − i

ℏ ⟨
[
Ô, ĤQh

]
⟩BiBi

Q (t) + i
ℏ ⟨
{
Ô, ∆̂
(
ĤQa; |Bi(t)⟩N

)}
⟩BiBi

Q (t),
we consider a mixed state that is given by |Bi(t)⟩N with the
probability ri for each index i (ri ≥ 0,

∑
i ri = 1).

We define the density matrix to describe the mixed state and the
expectation value of O for it by
ρ̂BB,mixed

Q (t) ≡ ∑i ri|Bi(t)⟩N N⟨Bi(t)|Q ≡
∑

i riρ̂
BiBi
Q (t),

⟨Ô⟩ρ̂BB,mixed
Q

(t) ≡ tr
(
ρ̂BB,mixed

Q (t)Ô
)
≡ ∑i ri⟨Ô⟩ρ̂BiBi

Q
(t) =

∑
i ri⟨Ô⟩BiBi

Q (t),

where ρ̂BiBi
Q (t) obeys ρ̂BiBi

Q (t)2 = ρ̂BiBi
Q (t) and tr

(
ρ̂BiBi

Q (t)
)
= 1, so

tr
(
ρ̂BB,mixed

Q (t)
)
= 1.

* ρ̂BB,mixed
Q (t) and ⟨Ô⟩ρ̂BB,mixed

Q
(t) are Q-Hermitian and real for

Q-Hermitian Ô, respectively.



They time-develop as follows:

d
dt
ρ̂BB,mixed

Q (t)

= − i
ℏ

[
ĤQh, ρ̂

BB,mixed
Q (t)

]
+

i
ℏ

∑
i

ri
{
∆̂
(
ĤQa; |Bi(t)⟩N

)
, ρ̂BiBi

Q

}
(t),

d
dt
⟨Ô⟩ρ̂BB,mixed

Q
(t)

= − i
ℏ
⟨
[
Ô, ĤQh

]
⟩ρ̂BB,mixed

Q
(t) +

i
ℏ

∑
i

ri⟨
{
Ô, ∆̂
(
ĤQa; |Bi(t)⟩N

)}
⟩
ρ̂

BiBi
Q

(t),

which are almost the same as those for ρ̂AA,mixed
Q (t). The only

difference is that the sign in front of ĤQa is opposite.

Using the automatic hermiticity mechanism:
|Bi(t)⟩ ≃ e

1
ℏ B(TB−t)e−

i
ℏ Ĥeff(t−TB)|B̃i(TB)⟩ = ∑ j∈A b(i)

j (t)|λ j⟩ ≡ |B̃i(t)⟩,
|Bi(t)⟩N ≃ 1√

⟨B̃i(t)|Q B̃i(t)⟩
|B̃i(t)⟩ ≡ |B̃i(t)⟩N for large TB − t, we find that

the various relations for ρ̂BB,mixed
Q (t) ≃ ρ̂B̃B̃,mixed

Q (t) become the same

as those for ρ̂ÃÃ,mixed
Q (t).



⇒ The automatic hermiticity mechanism works for mixed states
described by the density matrices ρ̂AA,mixed

Q (t) ≃ ρ̂ÃÃ,mixed
Q (t) and

ρ̂BB,mixed
Q (t) ≃ ρ̂B̃B̃,mixed

Q (t).
• Via the mechanism, both of the density matrices nicely obey

the von Neumann equation with the effectively obtained
Q-Hermitian Hamiltonian Ĥeff.

• ρ̂AiAi
Q (t) and ρ̂BiBi

Q (t) have real meanings as density matrices of
|Ai(t)⟩N and |Bi(t)⟩N .
• However, neither tr

(
ρ̂AiAi

Q (t)Ô
)
= N⟨Ai(t)|QÔ|Ai(t)⟩N nor

tr
(
ρ̂BiBi

Q (t)Ô
)
= N⟨Bi(t)|QÔ|Bi(t)⟩N matches the normalized

matrix element ⟨Ô⟩BiAi
Q (t) given in Eq.(4).



In the future-included CAT, we have a philosophy s.t. it is not
N⟨Ai(t)|QÔ|Ai(t)⟩N nor N⟨Bi(t)|QÔ|Bi(t)⟩N but ⟨Ô⟩BiAi

Q (t) that has a

role of an expectation value of Ô.

⇒ ρ̂AiAi
Q (t) and ρ̂BiBi

Q (t) are not good in this sense.

⇒ Then, what should we adopt as a density matrix in the
future-included CAT if we wish to respect the philosophy?

⇒ Let us consider the other kind of density matrix s.t. the trace of
the product of each component with an index i and Ô corresponds
to ⟨Ô⟩BiAi

Q (t).



Introducing |Ai(t)⟩M ≡ |Ai(t)⟩√
⟨Bi(t)|QAi(t)⟩

and |Bi(t)⟩M ≡ |Bi(t)⟩√
⟨Ai(t)|QBi(t)⟩

,

which obey iℏ d
dt |Ai(t)⟩M = Ĥ|Ai(t)⟩M, iℏ d

dt |Bi(t)⟩M = Ĥ†
Q |Bi(t)⟩M,

and M⟨Bi(t)|QAi(t)⟩M = 1, we define the “skew density matrix”
ρ̂BA,mixed

Q (t) and “expectation value” of Ô for it by

ρ̂BA,mixed
Q (t) ≡

∑
i

si|Ai(t)⟩M M⟨Bi(t)|Q ≡
∑

i

siρ̂
BiAi
Q (t),

⟨Ô⟩ρ̂BA,mixed
Q

(t) ≡ tr
(
ρ̂BA,mixed

Q (t)Ô
)
≡
∑

i

si⟨Ô⟩ρ̂BiAi
Q

(t) =
∑

i

si⟨Ô⟩BiAi
Q (t),

where the weight si for each ρ̂BiAi
Q (t) obeys si ≥ 0,

∑
i si = 1, and

tr
(
ρ̂BiAi

Q (t)
)
= 1,
(
ρ̂BiAi

Q (t)
)2
= ρ̂BiAi

Q (t). So tr
(
ρ̂BA,mixed

Q (t)
)
= 1.

ρ̂BA,mixed
Q (t) = Û(t − tr)ρ̂

BA,mixed
Q (tr)Û(t − tr)−1, where

Û(t − tr) ≡ e−
i
ℏ Ĥ(t−tr) is neither unitary nor Q-unitary, and tr is a

reference time.



They time-develop as follows:

d
dt
ρ̂BA,mixed

Q (t) = − i
ℏ

[
Ĥ, ρ̂BA,mixed

Q (t)
]
,

d
dt
⟨Ô⟩ρ̂BA,mixed

Q
(t) = − i

ℏ
⟨
[
Ô, Ĥ
]
⟩ρ̂BA,mixed

Q
(t).

⇒ ρ̂BA,mixed
Q (t) obeys the von Neumann eq. and Ehrenfest’s

theorem holds as they are.
These properties are quite in contrast to those of ρ̂AA,mixed

Q (t) and

ρ̂BB,mixed
Q (t).



If we consider the long time development, for
|Ai(t)⟩M ≃ |Ãi(t)⟩M ≡ |Ãi(t)⟩√

⟨B̃i(t)|QÃi(t)⟩
and

|Bi(t)⟩M ≃ |B̃i(t)⟩M ≡ |B̃i(t)⟩√
⟨Ãi(t)|Q B̃i(t)⟩

,

we find that
ρ̂BA,mixed

Q (t) ≃ ρ̂B̃Ã,mixed
Q (t) ≡ ∑i si|Ãi(t)⟩M M⟨B̃i(t)|Q ≡

∑
i siρ̂

B̃iÃi
Q (t) and

⟨Ô⟩ρ̂BA,mixed
Q

(t) ≃ ⟨Ô⟩
ρ̂B̃Ã,mixed

Q
(t) ≡ tr

(
ρ̂B̃Ã,mixed

Q (t)Ô
)

≡ ∑i si⟨Ô⟩
ρ̂

B̃i Ãi
Q

(t) =
∑

i si⟨Ô⟩B̃iÃi
Q (t) time-develop with an effectively

obtained Q-Hermitian Hamiltonian Ĥeff as follows:

d
dt
ρ̂B̃Ã,mixed

Q (t) = − i
ℏ

[
Ĥeff, ρ̂

B̃Ã,mixed
Q (t)

]
,

d
dt
⟨Ô⟩

ρ̂B̃Ã,mixed
Q

(t) = − i
ℏ
⟨
[
Ô, Ĥeff

]
⟩
ρ̂B̃Ã,mixed

Q
(t).



However, ρ̂B̃Ã,mixed
Q (t), ⟨Ô⟩

ρ̂B̃Ã,mixed
Q

(t) are neither Q-Hermitian nor real

for Q-Hermitian Ô, respectively, because |Ãi(t)⟩M and |B̃i(t)⟩M are
different states.

This is quite in contrast to the cases for ρ̂AA,mixed
Q (t) and ρ̂BB,mixed

Q (t),
where only either |Ai(t)⟩N or |Bi(t)⟩N is used.

⇒ To resolve this problem, we will consider it in another way.



On the skew density matrix

⟨Ô⟩ρ̂BA,mixed
Q

(t) =
∑

i si tr
(
ρ̂BiAi

Q (t)Ô
)
=
∑

i si
tr
(
ρ̂

BiBi
Q (t)Ôρ̂AiAi

Q (t)
)

tr
(
ρ̂

BiBi
Q (t)ρ̂AiAi

Q (t)
) for Q = 1

corresponds to the weak value for the generalized state (Y.
Aharonov ,L. Vaidman, 1991), but is different from the generalized

weak value tr(ρ̂ f Ôρ̂i)
tr(ρ̂ f ρ̂i)

(S. Wu, K. Mølmer, 2009, S. Tamate,
T. Nakanishi, and M. Kitano, 2012).

The latter expression is more general since the numbers of
ensembles of initial and final states for the density matrices ρ̂i and
ρ̂ f are taken independently, while, in our skew density matrix, the
numbers of ensembles are supposed to be equal.

This is because we are keeping in mind the maximization principle,
by which a pair of initial and final states is generically chosen.
Then, in a situation s.t. a pair {|Ai⟩, |Bi⟩} and each weight {si} are
given, our skew density matrix enables us to calculate and
simulate the “expectation value” of O.



Hermiticity and reality for ρ̂BA,mixed
Q (t) and ⟨Ô⟩ρ̂BA,mixed

Q
(t)

KN and H. B. Nielsen, PTEP 2013, 023B04; 2018,
039201[erratum].

We previously obtained the correspondence:

⟨O⟩BA for large TB − t and large t − TA ≃ ⟨O⟩AA
Q′ for large t − TA,

based on the Schrödinger eq.(1) and iℏ d
dt |B(t)⟩ = H†|B(t)⟩, where

⟨O⟩BA =
⟨B(t)|O|A(t)⟩
⟨B(t)|A(t)⟩ and ⟨O⟩AA

Q′ =
⟨A(t)|Q′O|A(t)⟩
⟨A(t)|Q′A(t)⟩ .

⇒ The future-included CAT is not excluded phenomenologically,
even though it looks very exotic.



We estimate ⟨O⟩BA
Q and ρ̂BA

Q (t), based on the Schrödinger eq.(1)

and iℏ d
dt |B(t)⟩ = H†

Q |B(t)⟩.

We express ⟨O⟩BA
Q as ⟨O⟩BA

Q (t) = ⟨A(t)|QB(t)⟩⟨B(t)|QO|A(t)⟩
⟨A(t)|QB(t)⟩⟨B(t)|QA(t)⟩ .

Utilizing the expansion: |B(TB)⟩ = ∑i ci|λi⟩ =
∑

i J(λi)∗|λi⟩, where
J(λi) is a function of λi, we evaluate |B(t)⟩⟨B(t)|Q as follows:

|B(t)⟩⟨B(t)|Q = e−
i
ℏ Ĥ†

Q
(t−TB)|B(TB)⟩⟨B(TB)|Qe

i
ℏ Ĥ(t−TB)

=
∑
i, j

cic∗je
i
ℏRe(λ j−λi)(t−TB)e

1
ℏ Im(λ j+λi)(TB−t)|λi⟩⟨λ j|Q

≃
∫ t+∆t

t−∆t |B(t)⟩⟨B(t)|Qdt∫ t+∆t
t−∆t dt

≃
∑

i

|ci|2e
2
ℏ Imλi(TB−t)|λi⟩ ⟨λi|Q

≃ e
2
ℏ B(TB−t)Q4 for large TB − t, (5)

where in the third line we have smeared the present time t a little
bit, and the off-diagonal elements wash to 0.



In the last line we have used the automatic hermiticity mechanism
for large TB − t, and introduced Q4 ≡

∑
i∈A |ci|2|λi⟩⟨λi|Q =

J(Ĥeff + iBΛA)†
Q
ΛAJ(Ĥeff + iBΛA) = Q−1 J̃(Ĥeff)†QJ̃(Ĥeff) ≡ Q−1QJ̃ .

Here, supposing that Reλi are not degenerate, we have introduced
ΛA ≡

∑
i∈A |λi⟩⟨λi|Q, a function J̃ s.t. J̃(Reλi) ≡ J(Reλi + iB) = c∗i for

i ∈ A, and QJ̃ ≡ J̃(Ĥeff)†QJ̃(Ĥeff).

Now we use the automatic hermiticity mechanism for large t − TA.
Then, since |A(t)⟩ ≡ ∑i ai(t)|λi⟩ behaves as |Ã(t)⟩ ≡ ∑i∈A ai(t)|λi⟩,
we obtain

⟨O⟩BA
Q ≃

⟨Ã(t)|QJ̃
O|Ã(t)⟩

⟨Ã(t)|QJ̃
Ã(t)⟩

≡ ⟨O⟩ÃÃ
QJ̃

for large TB − t and large t − TA.

(6)



Next, let us consider the expectation value in the
future-not-included theory: ⟨O⟩AA

QJ
≡ ⟨A(t)|QJO|A(t)⟩
⟨A(t)|QJ A(t)⟩ , where

QJ ≡ J(Ĥ)†QJ(Ĥ) = (PJ−1
−1)†PJ−1

−1, and PJ−1 ≡ J(Ĥ)−1P
diagonalizes Ĥ: (PJ−1)−1ĤPJ−1 = P−1ĤP = D.

We introduce |λi⟩J
−1 ≡ J(Ĥ)−1|λi⟩, so that |λi⟩J

−1
is QJ-orthogonal,

i.e., IQJ (|λi⟩J
−1
, |λ j⟩J

−1
) ≡ J−1⟨λi|QJ |λ j⟩J

−1
= δi j.

We use the automatic hermiticity mechanism for large t − TA.
|A(t)⟩ behaves as |Ã(t)⟩ = ∑i∈A ai(t)|λi⟩, and QJ is estimated as
follows:
QJ ≃ J(Ĥeff + iBΛA)†QJ(Ĥeff + iBΛA) = J̃(Ĥeff)†QJ̃(Ĥeff) = QJ̃ .



Then we find ⟨O⟩AA
QJ
≃
⟨Ã(t)|QJ̃

O|Ã(t)⟩
⟨Ã(t)|QJ̃

Ã(t)⟩ = ⟨O⟩
ÃÃ
QJ̃

for large t − TA.

Thus we have obtained the following correspondence:

⟨O⟩BA
Q for large TB − t and large t − TA ≃ ⟨O⟩ÃÃ

QJ̃

≃ ⟨O⟩AA
QJ

for large t − TA,

which suggests that the future-included theory is not excluded,
although it looks very exotic.

⟨O⟩ÃÃ
QJ̃

is real for QJ̃-Hermitian O, and time-develops according to

the QJ̃-Hermitian Hamiltonian Ĥeff.

We can apply this correspondence to each i-component ⟨Ô⟩BiAi
Q (t).



Next let us evaluate the skew density matrix ρ̂BA
Q (t) = |A(t)⟩⟨B(t)|Q

⟨B(t)|QA(t)⟩ by

multiplying it by 1 = ⟨A(t)|QB(t)⟩
⟨A(t)|QB(t)⟩ . Utilizing the above evaluation of

|B(t)⟩⟨B(t)|Q, we obtain the correspondence:

ρ̂BA
Q (t) for large TB − t and large t − TA ≃ ρ̂ÃÃ

QJ̃
(t)

≃ ρ̂AA
QJ

(t) for large t − TA,

where ρ̂ÃÃ
QJ̃

(t) ≡
|Ã(t)⟩⟨Ã(t)|QJ̃
⟨Ã(t)|QJ̃

Ã(t)⟩ = Ûeff(t − tr)ρ̂ÃÃ
QJ̃

(tr)Ûeff(t − tr)†
QJ̃ .

Here tr is a reference time, and ρ̂ÃÃ
QJ̃

(t) obeys tr
(
ρ̂ÃÃ

QJ̃

)
= 1 and(

ρ̂ÃÃ
QJ̃

)2
= ρ̂ÃÃ

QJ̃
.

Ûeff(t − tr) = e−
i
ℏ Ĥeff(t−tr) is QJ̃-unitary, and ρ̂ÃÃ

QJ̃
(t) is QJ̃-Hermitian.

We can apply this correspondence to each i-component ρ̂BiAi
Q (t).



Therefore, though our skew density matrix ρ̂BiAi
Q (t) is not

Q-Hermitian by its definition, after a long time development it
results in a usual expression of density matrix ρ̂ÃiÃi

QJ̃
(t) that is

QJ̃-Hermitian.

Application to ρ̂BA,mixed
Q (t) =

∑
i siρ̂

BiAi
Q (t) is rather straightforward

and we easily see that it time-develops similarly.

Indeed, applying this correspondence to each component ρ̂BiAi
Q (t),

we find that the expectation value of O for ρ̂BiAi
Q (t), ⟨Ô⟩

ρ̂
BiAi
Q

(t), is

expressed for large TB − t and large t − TA as

⟨Ô⟩
ρ̂

BiAi
Q

(t) = tr
(
ρ̂BiAi

Q (t)Ô
)
≃ tr
(
ρ̂ÃiÃi

QJ̃
(t)Ô
)
≡ ⟨Ô⟩

ρ̂
Ãi Ãi
QJ̃

(t) = ⟨O⟩ÃiÃi
QJ̃

(t),

which is real for QJ̃-Hermitian O.



Finally, ρ̂BA,mixed
Q (t) ≃ ρ̂ÃÃ,mixed

QJ̃
(t) =

∑
i siρ̂

ÃiÃi
QJ̃

(t) and

⟨Ô⟩ρ̂BA,mixed
Q

(t) ≃ ⟨Ô⟩
ρ̂ÃÃ,mixed

QJ̃

(t) =
∑

i si⟨Ô⟩
ρ̂

Ãi Ãi
QJ̃

(t) time-develop

according to

d
dt
ρ̂ÃÃ,mixed

QJ̃
(t) = − i

ℏ

[
Ĥeff, ρ̂

ÃÃ,mixed
QJ̃

(t)
]
, (7)

d
dt
⟨Ô⟩

ρ̂ÃÃ,mixed
QJ̃

(t) = − i
ℏ
⟨
[
Ô, Ĥeff

]
⟩ÃÃ,mixed

QJ̃
(t), (8)

which show that ρ̂BA,mixed
Q (t) ≃ ρ̂ÃÃ,mixed

QJ̃
(t) obeys the von Neumann

equation with the QJ̃-Hermitian Hamiltonian Ĥeff and Ehrenfest’s
theorem holds.

* ρ̂ÃÃ,mixed
QJ̃

(t) is QJ̃-Hermitian, and ⟨Ô⟩
ρ̂ÃÃ,mixed

QJ̃

(t) is real for

QJ̃-Hermitian O.

⇒ The problem with ρ̂BA,mixed
Q (t) and ⟨Ô⟩ρ̂BA,mixed

Q
(t) mentioned above

has been effectively resolved by considering the long time
development for large TB − t and large t − TA.



Summary and outlook
We studied a couple of density matrices to deal with mixed states.
In particular, we investigated the skew density matrix ρ̂BA,mixed

Q (t)
that has nice properties in the future-included CAT.

Utilizing the density matrices, it would be intriguing to study
• the von Neumann entropy
• classical dynamics via Wigner function
• master equation by interpreting our theory as a subsystem in

a larger system
• provide ⟨Ô⟩periodic time with the time t dependence by

introducing a clock operator T̂clock(t) in a periodic universe
model that we previously studied

KN, H.B.Nielsen, PTEP 2022 091B01
• investigate the harmonic oscillator that we previously studied

more in detail, and the extention of the Q-Hilbert space

KN, H.B.Nielsen, PTEP 2019 073B01



Complex coordinate and momentum formalism

KN and H.B.Nielsen, PTP126 (2011)1021

q and p easily get complex.
How is ψ(q) = ⟨q|ψ⟩ expressed for complex q?

We proposed for complex q and p

m⟨new q|q̂new = m⟨new q|q,
m⟨new p|p̂new = m⟨new p|p.

m⟨new q| ≡ ⟨new q∗| : a modified bra defined to keep the analyticity in
dynamical parameters such as q and p

We also introduced mathematical devices such as modified bras,
modified complex conjugate, and a smeared delta function etc. for
complex values, to keep the analyticity. → we can express
complex saddle points in terms of bras and kets.



Comparison between the future-included and
future-not-included CAT

Future-included CAT Future-not-included
CAT

action S =
∫ TB

TA
dtL S =

∫ t
TA

dtL

“exp. value” ⟨Ô⟩BA =
⟨B(t)|Ô|A(t)⟩
⟨B(t)|A(t)⟩ ⟨Ô⟩AA =

⟨A(t)|Ô|A(t)⟩
⟨A(t)|A(t)⟩

time iℏ d
dt ⟨Ô⟩BA iℏ d

dt ⟨Ô⟩AA

development = ⟨[Ô, Ĥ]⟩BA ≃ ⟨[Ô, Ĥh]⟩AA

classical theory δS = 0 δS eff = 0,
S eff =

∫ t
TA

dtLeff ∈ R
momentum p = mq̇, p = meff q̇,

relation m = mR + imI ∈ C meff ≡ mR +
m2

I
mR
∈ R

K.N., H.B.Nielsen, IJMP A27(2012) 1250076;Erratum-ibid,
A32(2017) 1792003

K.N., H.B.Nielsen, PTEP 2013 023B04; Erratum-ibid, 2018 039201
K.N., H.B.Nielsen, PTEP 2013 073A03; Erratum-ibid, 2018 029201



Complex action suggests future-included theory

KN and H.B.Nielsen, PTEP 2017 111B01

If a theory is described with a complex action, then such a theory
is suggested to be the future-included theory, rather than the
future-not-included theory.

Otherwise, we encounter a contradiction: persons living at different
times would be led to a strange re-choosing of initial states, and
see different histories of the universe.

⇒ The future-not-included CAT is excluded.

Even so, the future-not-included CAT still remains to be fascinating:
a good playground to study various intriguing aspects of the CAT.



Theorem on the normalized matrix element ⟨Ô⟩BA
Q

KN, H.B.Nielsen, PTEP 2015 051B01; PTEP 2017 081B01

Theorem Assume that Ĥ is non-normal but diagonalizable and
that the imaginary part of its eigenvalues are bounded from above,
and define a modified inner product IQ. Let |A(t)⟩ and |B(t)⟩
time-develop according to |A(t)⟩ = e−

i
ℏ Ĥ(t−TA)|A(TA)⟩,

|B(t)⟩ = e−
i
ℏ Ĥ†

Q
(t−TB)|B(TB)⟩, and be normalized by

⟨A(TA)|QA(TA)⟩ = 1, ⟨B(TB)|QB(TB)⟩ = 1.
Next determine |A(TA)⟩ and |B(TB)⟩ so as to maximize |⟨B(t)|QA(t)⟩|.
Then, provided that Ô†Q

= Ô, ⟨Ô⟩BA
Q ≡

⟨B(t)|QÔ|A(t)⟩
⟨B(t)|QA(t)⟩ becomes real and

time-develops under a Q-Hermitian Hamiltonian.

We call this way of thinking the maximization principle.



* Imλi are bounded from above to avoid the Feynman path integral∫
e

i
ℏSDpath being divergently meaningless.

⇒ Some Imλi take the maximal value B, and we denote the
corresponding subset of {i} as A.

Among the four types of quantum theory, only in the
future-included CAT, initial (and final) conditions are determined in
the Feynman path integral. ⇐ One of the benefits of the CAT.



Periodic complex action theory

KN, H.B.Nielsen, PTEP 2022 091B01

In the periodic CAT, extending the weak value of Ô to

⟨Ô⟩periodic time ≡
Tr
(
e−

i
ℏ

Ĥtp Ô
)

Tr
(
e−

i
ℏ

Ĥtp
) , we presented a theorem stating that

⟨Ô⟩periodic time becomes real provided that Ô is Q-Hermitian, for the
period tp selected s.t. |Tr

(
e−

i
ℏ Ĥtp
)
| is maximized, in the case where

B ≤ 0 and |B| << |Reλm − Reλn| for ∀m, n (m , n).

The theorem suggests that, if our universe is periodic, then even
the period could be an adjustment parameter to be determined in
the Feynman path integral.

This is a variant of the maximization principle that we previously
proposed.


