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Brief review of the bosonic Lorentzian IKKT matrix model 2

[talk by W. Piensuk]
For N=2, there are three classical solution

(v > 0)
7 = /dAei(Sb+Sm) S0O(9,1) symmetry ’_trivial soluton A, =0

) Y
= Pauli solution A, = \/;Uu pw=1,2,3

The bosonic Lorentzian IKKT matrix
model with Lorentz invariant mass term

The bosonic action
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squashed Pauli solution A, = /yo0, p=1,2

non-trivial solution breaks Lorentz symmetry spontaneously

The Lorentz invariant mass term
Non-compactness of Lorentz group
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Introduction

Talk by W. Piensuk

* Introduced the bosonic Lorentzian IKKT matrix model with mass term
« Possibility of the divergence of partition function around the non-trivial solutions

due to the non-compactness of Lorentz symmetry

This talk

« We confirmed that the partition function around the Pauli solution diverges by

1/D expansion.




1/D expansion 4

D: the number of bosonic matrices [Hotta-Nishimura-Tsuchiya('98)]
' (Euclidean model without mass term)
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The saddle points dominates the path integral at Large D < = hqp + iKab —



Saddle points for N=2 5

The saddle point Eq. ﬁab 4 q —bl — ()
a

For N=2, there are three saddle points.
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The relevant saddle points
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|dentification of each saddle with classical solution (y > 0)

remaining symmetries
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SU(2) SU(2)
classical solutions [talk by W. Piensuk]
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Singularity on the real axis 7
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absolutely convergent



The case with convergence factor ¢ 8
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The v(t) saddle
becomes relevant



The new saddle points
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7: the parameter deforming the
integration contour based on
Cauchy’s theorem

original integration contour

new saddle point appears
between the singular points

the new saddle and v(¥)saddle
describe the contribution of the

Pauli solution



Divergence of the partition functionas ¢ - 0 10

Pauli solution trivial solution
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Z(v"Y) ~ e 5P3 (7€) 2 diverges as ¢ - 0
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ZPauli ~ g 2 ? Ztrivial ~ finite

due to the Lorentz symmetry

transition at finite & : | Z(v™")| > |Z(v)| for 7 < 7. = \/g (large D)

confirmed by numerical simulation [talk by A. Tripathi]



Summary 11

« 1/D expansion is useful in probing the nonperturbative properties of the

N=2 bosonic IKKT matrix model with mass term

« \We have confirmed the divergence of the partition function around Pauli
solution due to the non-compactness of Lorentz symmetry group
 New saddle appears after introducing convergence factors

« Partition function associated with new saddle diverges as ¢ —» 0
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The new saddle point 13

h

vl viWsaddle(Pauli)  Z(vh) ~ e 39P7 (g

w e h=011 ,’

new saddle point appears
between the singular points
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Both, the new saddle and v(*)saddle
correspond to the Pauli solution



Numerical simulation around the Pauli solution 14

/Z = /dA ot (So+Sm)  Pm = %NW ®tr(Ao)? + tr(4;)?}

convergence factor due to the Lorentz symmetry
initial configuration: A, = \/gau uw=1,23

results obtained by the generalized thimble method:
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