Lefschetz-thimble analysis of the Lorentzian IKKT matrix model around its classical solutions

Ashutosh Tripathi (D2, KEK)

KEK Theory workshop 2023 Nov 29-Dec1, Tsukuba, Japan

In collaboration with: Y. Asano, C. Y. Chou, , J. Nishimura, W. Piensuk, N. Yamamori (ongoing work)

Introduction

<u>Ultimate goal</u>: numerically(nonperturbative) investigating the emergence of (3+1)D expanding spacetime. Lorentzian IKKT matrix model is a promising candidate.

$$S_b = -\frac{N}{4} \operatorname{tr}\{[A_{\mu}, A_{\nu}][A^{\mu}, A^{\nu}]\}$$

 $Z = \int dA d\psi d\bar{\psi} e^{i(S_b + S_f)} \qquad A_{\mu}(0, 1, ..., 9) \text{ and } \psi_{\alpha}(\alpha = 1, 2, ..., 16) \text{ are N} \times \text{N Hermitian matrices}$

(not absolutely convergent)

$$S_f = -\frac{N}{2} \operatorname{tr}\{\bar{\psi}_{\alpha}(\Gamma^{\mu})_{\alpha\beta}[A_{\mu},\psi_{\beta}]\}$$

- Integrand involves a pure phase factor e^{iSb}, usual Monte Carlo methods is not applicable. This is the sign problem!
- Numerical simulation is difficult!
- <u>In this talk</u>: We study N=2 bosonic case of the model using generalized Lefschetz thimble method.
- <u>N=2 model</u> → a prototype of emerging space-time + some nice analytical predictions from 1/D expansion (N.Yamamori's talk)

- 1. Introduction
- 2. How to deal with the Lorentzian IKKT matrix model (numerically)
- 3. Results for the N=2 bosonic model
- 4. Summary and future prospects

Regularization and sign problem

Sign of the mass term

$$Z = \int dAe^{-S_{eff}}, \quad \frac{\text{partition function we study using GTM}}{\text{no fermions!}}$$
$$S_{eff} = -iN\left(\frac{1}{2}\text{tr}[A_0, A_{\text{I}}]^2 - \frac{1}{4}\text{tr}[A_{\text{I}}, A_{\text{J}}]^2\right) - \frac{i}{2}\frac{N\gamma\{e^{i\epsilon}\text{tr}(A_0)^2 - e^{-i\epsilon}\text{tr}(A_{I})^2\}}{(\text{mass term})}$$

(sign of γ becomes crucial)

$\gamma < 0$, $\in ightarrow -0$	Euclidean model(SO(10) symmetry)	Z < ∞ (finite)
$\gamma > 0$, $\in ightarrow + 0$	\neq Euclidean (leads to unbounded action)	$Z = \infty \qquad (divergence) (in \varepsilon \to 0 limit)$

Classical solutions for N=2 model (W.Piensuk's talk)

Divergence of the partition function

• Initial configuration :

 A_{μ} = Pauli

- = Squashed pauli
- <u>Results obtained by the GTM</u>:

(sample configurations only on the thimble associated with the Pauli or squashed Pauli solutions)

$$\langle \frac{1}{N} \operatorname{tr}(A_0)^2 \rangle \sim \frac{c}{\epsilon} \quad (\text{in } \epsilon \to 0)$$

$$\langle \frac{1}{N} \operatorname{tr}(A_0)^2 \rangle \sim -\frac{\partial}{\partial \epsilon} \log Z \quad \Longrightarrow \quad Z \sim \epsilon^{-c} \quad (\text{W.Piensuk's talk})$$

$$\langle -\frac{1}{N} \operatorname{tr}(A_0)^2 + \frac{1}{N} \operatorname{tr}(A_i)^2 \rangle = (\text{finite}) \sim \frac{3}{4} \gamma \quad (\text{large} (\operatorname{in} \epsilon \to 0))$$

Divergence due to the non-compactness of Lorentz symmetry group is confirmed.

<u>Transition at finite ϵ </u>

Thimble calculations confirmed the transition predicted from 1/D expansion analysis for Pauli thimble.

What causes the divergence?

 $R = -\mathrm{tr}(A_0^{\dagger}A_0) + \mathrm{tr}(A_i^{\dagger}A_i) \left\{ \begin{array}{l} \mathsf{R}<0 \text{ time like configurations} \\ \mathsf{R}>0 \text{ space like configurations} \end{array} \right\}$

dominant saudie	adule dominant comy.	
new saddle	$ ilde{\gamma} < ilde{\gamma}_c$	time-like (R<0)
v ⁽⁺⁾ saddle	$\tilde{\gamma} > \tilde{\gamma}_c$	space-like(R>0)

The interpretation of the transition

 $\epsilon \to 0$ makes time like configurations dominate. $\tilde{\gamma} \to \infty$ makes space-like configurations dominate. Transition point $\tilde{\gamma}^2 \epsilon = 2$ (large D)

SO(D) symmetric model doesn't show these properties (truly of Lorentzian nature)

No transition for the squashed pauli solution!

Results for the squashed Pauli thimble

configurations near squashed Pauli always have one time-like component, since it has one shrunken direction unlike Pauli.

Summary

- Lorentzian IKKT matrix model is <u>not well defined</u> as it is and suffers from severe <u>sign problem</u>.
- We regularized the model by adding a <u>Lorentz invariant mass term.</u> The <u>generalized thimble method</u> enabled us to solve the sign problem.
- The mass term allows interesting classical solutions to appear for $\gamma > 0$.
- In the N=2 bosonic case, we show that partition function associated with nontrivial saddles <u>diverges</u> due to the <u>non-compactness</u> of the Lorentz symmetry.
- The divergence occurs due to the "<u>time-like configurations</u>" and it turns out to be <u>stronger for the Pauli solution</u>.

Future work

- **SUSY** impact of SUSY, simulations are doable (N=2 case is on-going)
- larger N Computational cost in generalized Lefschetz thimble method grows with N as O(N⁶). But we may still do N=4,8,16.....

Thank you so much for your attention

Backup slide

No divergence for space-like configs.

Analysis for Pauli solution

