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Introduction

e Ultimate goal: numerically(nonperturbative) investigating the emergence of
(3+1)D expanding spacetime. Lorentzian IKKT matrix model is a promising
candidate. N

s A )
7 = /dAdwdwei(Sb+S/\4M(O,1,...9) and Y, (@=1,2....16) are NXN Hermitian matrices

(not absolutely convergent) S = _Etr{;}a(l““)aﬁ (A, 3]}
2 Y

Integrand involves a pure phase factor eS¢, usual Monte Carlo methods is not
applicable. This is the sign problem!

Numerical simulation is difficult!

In this talk: We study N=2 bosonic case of the model using generalized Lefschetz
thimble method.

N=2 model — a prototype of emerging space-time + some nice analytical
predictions from 1/D expansion (N.Yamamori’s talk)
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Regularization and sign problem

- . Kim-JdN-Tsuchiya Phys.Rev.Lett. 108 (2012)
partition function 011601,1108.1540 [hep-th]

Zr = / dA dip ' (Sot+5s) = / dAEOPfM (A)

polynomial in A
real valued unlike Euclidean

pure phase factor
(oscillating weight)

—{model not well defined as it is} (sign problem)
\ }
| |
As a regularization, we introduce a Lorentz we use generalized Lefschetz thimble
invariant mass term method

deform the integration contour
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fluctuation of action supresses along
the flow
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Anagnostopoulos-Azuma- Hatakeyama
Hirasawa-J.N.-Papadoudis-Tsuchiya, convergence factor

WOrK in Brouress large flow time: milder sign problem




Sign of the mass term

_S. artition function we study using GTM
7 [daesr, B Y using

no fermions!

1 1 ' . .
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(mass term)

(sign of y becomes crucial)

y<0,e- —0 Euclidean model(SO(10) symmetry) Z< (finite)
y>0,e->+0 # Euclidean (leads to unbounded action) |Z=c  (divergence)
(in € = 0 limit)

Classical solutions for N=2 model| (w.Piensuks talk)
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Divergence of the partition function
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Divergence due to the non-compactness of Lorentz ‘

Pauli thimble dominates

symmetry group is confirmed. 11 V22 Fosseriiie sl £ 7 5 0



Transition at finite €

Results for the pauli thimble:  —————r——————————————r————
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Thimble calculations confirmed the transition predicted from 1/D
expansion analysis for Pauli thimble.



R = —tr(Al Ag) + tr(Al 4,) {

What causes the divergence?

D=10, Il\l=2, e = 0.3

® data

R<0 time like configurations
R>0 space like configurations

space like
configurations _
$ i ' ’
Divergence is caused by
time-like configurations
N 2
: 3 b v =1/— = 2.58
3 €
time-like (for € = 03)
configurations
1 2 3 4 5
v
dominant saddle dominant config.
new saddle v < Ye time-like (R<0)
v(i¥)saddle ’? > ﬁ/c space-like(R>0)




The interpretation of the transition

Non-compactness of
. Lorentz symmetry-
causes divergence

time like |
configurations

\ / Non-compactness of
space like Lorentz symmetry-
configurations does not cause

/ divergence

Pauli saddle

e — 0 makes time like configurations dominate. Transition point

2
y — oo makes space-like configurations dominate. Y€

SO(D) symmetric model doesn’t show these properties (truly of Lorentzian nature)
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No transition for the squashed pauli solution!

epsilon=0.3 (squash pauli)
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® Numerical result -




Results for the squashed Pauli thimble

Rap = —(A§)"(A5) + Y (A7)*(47)

1=1

Analysis for Sqush Pauli solution
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Squashed-pauli saddle —

configurations near squashed Pauli always have one
time-like component, since it has one shrunken
direction unlike Pauli.



Summary

e Lorentzian IKKT matrix model is not well defined as it is and suffers from severe
sign problem.

* We regularized the model by adding a Lorentz invariant mass term. The
generalized thimble method enabled us to solve the sign problem.

* The mass term allows interesting classical solutions to appear for y>0.

* Inthe N=2 bosonic case, we show that partition function associated with non-
trivial saddles diverges due to the non-compactness of the Lorentz symmetry.

 The divergence occurs due to the “time-like configurations” and it turns out
to be stronger for the Pauli solution.

Future work

e SUSY - impact of SUSY, simulations are doable (N=2 case is on-going)

* larger N - Computational cost in generalized Lefschetz thimble method grows
with N as O(N®). But we may still do N=4,8,16.....



Thank you so much for your attention
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No divergence for space-like configs.
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For 4 = oo, we expect to see <%tr (AO)2> — const. as € — 0.



Eigenvalues of R

Analysis for Pauli solution
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