Correlation functions from homotopy algebras and the applications KEK Theory Workshop 2023

Keisuke Konosu

Graduate School of Arts and Sciences, The University of Tokyo

2023/11/29

based on arXiv 2305.11634 K.K., Y. Okawa arXiv 2305.13103 K.K. *in preparation* K.K., Y. Okawa

Motivations

We want to know the non-perturbative definition of string theory!

Candidates

matrix models

string field theory (SFT)

```
etc....
```


String Field Theory and Homotopy algebra

Homotopy algebras are effective tools to construct SFT.

- (quantum) A_{∞} algebra \rightarrow open SFT
- (quantum) L_{∞} algebra \rightarrow closed SFT
- ▶ open-closed homotopy algebra \rightarrow open-closed SFT

etc....

Advantage

- Systematic
- Algebraic: We do not need path integral.

Universal

etc....

Construct the formulas for QFT and extend them to SFT!!

Homotopy Algebra and Field Theory

There are many things we can do using homotopy algebras!

- relating covariant and light-cone string field theories [Erler and Matsunaga, arXiv:2012.09521]
- calculating scattering amplitudes

 $[{\sf Kajiura,\ math}/0306332]\ {\sf etc.}$

integrating out fields

[Sen, arXiv:1609.00459],

[Erbin, Maccaferri, Schnabl and Vošmera, arXiv:2006.16270],

[Koyama, Okawa and Suzuki, arXiv:2006.16710] etc.

correlation functions

scalar field [Okawa, arXiv:2203.05366],

free scalar and Dirac field [K.K. and Okawa, arXiv:2305.11634],

general scalar and Dirac field [K.K., arXiv:2305.13103] etc.

String Field Theory and Homotopy algebra

Homotopy algebras are effective tools to construct SFT.

- (quantum) A_{∞} algebra \rightarrow open SFT
- (quantum) L_{∞} algebra \rightarrow closed SFT
- ▶ open-closed homotopy algebra \rightarrow open-closed SFT

etc....

Advantage

- Systematic
- Algebraic: We do not need path integral.

Universal

etc....

Construct the formulas for QFT and extend them to SFT!!

Homotopy algebra and the universal property

Formula for on-shell amplitudes

$$\pi_1 \operatorname{\mathbf{P}} \operatorname{\mathbf{Q}} \operatorname{\mathbf{P}} + \pi_1 \operatorname{\mathbf{P}} m \, rac{1}{\operatorname{\mathbf{I}} + h \, m + i \hbar \, h \, \operatorname{\mathbf{U}}} \operatorname{\mathbf{P}},$$

I :identity on $T\mathcal{H}$ P :on-shell projection h, m, \mathbf{U} :determined by the theory

Homotopy algebra

Vector space

$$\mathcal{H} = \bigoplus_{i \in \mathbb{Z}} \mathcal{H}_i ,$$

 $T\mathcal{H} = \bigoplus_{i=0}^{\infty} \mathcal{H}^{\otimes n} ,$

Action

$$S = -\frac{1}{2}\omega(\Phi, \pi_1 \mathbf{Q} \Phi) - \sum_{n=0}^{\infty} \frac{1}{n+1} \omega(\Phi, \pi_1 \boldsymbol{m}_n (\Phi \otimes \ldots \otimes \Phi)),$$

where π_n is the projection from $T\mathcal{H}$ onto $\mathcal{H}^{\otimes n}$. Gauge transformation

$$\delta_{\lambda}\Phi = \pi_1 \boldsymbol{Q}\lambda + \sum_{k=1}^{\infty} \sum_{l=0}^{k-1} \pi_1 \boldsymbol{m}_k (\underbrace{\Phi \otimes \ldots \otimes \Phi}_l \otimes \lambda \otimes \underbrace{\Phi \otimes \ldots \otimes \Phi}_{k-l-1}),$$

Gauge invariance (quantum A_{∞} relations)

$$\left(\mathbf{Q} + \sum_{n=0}^{\infty} \boldsymbol{m}_n + i\hbar \,\mathbf{U}\right)^2 = 0$$

Homotopy algebra and Correlation Function

In the theories without gauge symmetry, it is sufficient to consider two spaces:

$$\mathcal{H}=\mathcal{H}_1\oplus\mathcal{H}_2$$
 .

We take Φ to be

$$\Phi = \int d^d x \, \varphi(x) \, c(x) + \int d^d x \left(\,\overline{\theta}_\alpha(x) \, \Psi_\alpha(x) + \overline{\Psi}_{\alpha(x)} \, \theta_\alpha(x) \, \right),$$

where $\varphi(x)$ is the scalar field and $\Psi(x)$ is the Dirac field. Then, correlation functions are given by

Homotopy algebra and Correlation Function

For simplicity, we consider only the scalar part. Then,

$$\langle \Phi^{\otimes n} \rangle = \langle \underbrace{\Phi \otimes \Phi \otimes \ldots \otimes \Phi}_{n} \rangle$$

= $\int d^d x_1 d^d x_2 \dots d^d x_n \langle \varphi(x_1) \varphi(x_2) \dots \varphi(x_n) \rangle$
 $c(x_1) \otimes c(x_2) \otimes \dots \otimes c(x_n),$

and correlation functions are obtained as the coefficients of the bases of $\mathcal{H}^{\otimes n}.$

The information of Schwinger-Dyson equations are contained by

$$f^{-1}f\mathbf{1}=\mathbf{1}$$
 .

This fact confirms that our formula represents the correlation functions in the ordinary quantum field theory.

In zero-dimensional case, we can represent the homotopy operators by infinite dimensional matrices.

In the quartic Euclidean theory, it is given by

$$\boldsymbol{h} \mathbf{U} = \frac{1}{m^2} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 2 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 3 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 4 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix},$$

$$\boldsymbol{h} \boldsymbol{m}_3 = \frac{\lambda}{m^2} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 1 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ \vdots & \ddots \end{pmatrix}$$

Recall that the key operator f is defined perturbatively:

$$\boldsymbol{f} = \frac{1}{\mathbf{I} + \boldsymbol{h}\,\boldsymbol{m} + i\hbar\,\boldsymbol{h}\,\mathbf{U}} = \mathbf{I} + \sum_{n=1}^{\infty} (-1)^n \,(\,\boldsymbol{h}\,\boldsymbol{m} + i\hbar\,\boldsymbol{h}\,\mathbf{U}\,)^n \,.$$

In this case, we can calculate exact inverse of $\mathbf{I} + h \mathbf{m} + i\hbar h \mathbf{U}$ by truncating infinite matrices to N by N matrices.

the quartic Euclidean theory

Even when $\lambda = 0.2$, the nonperturbatibe effects dominate.

$$\langle \varphi^2 \rangle = 0.724059$$

and the estimated value from our formula for ${\cal N}=100$

$$f_{20} = 0.724059$$
 .

the number of loops	perturbative values for $\langle \varphi^2 \rangle$
1	0.4
2	1.36
3	-1.016
4	6.8176
5	-25.2714
6	131.548

Summary and Outlook

We proposed the formula for correlation functions involving the scalar fields and the Dirac field in homotopy algebras:

 $\langle \Phi^{\otimes n} \rangle = \pi_n \, \boldsymbol{f} \, \boldsymbol{1} \, .$

Moreover, nonperturbative extension of the formula was discussed.

The future works are as follows:

- general description for nonperturbative correlation functions in homotopy algebras
- symmetries: K.K. and J.Yoshinaka in preparation
- extentions of perturbative formula to general gauge theory e.g.) Yang-Mills theory: working in progress with J.Yoshinaka
- extentions to string field theory