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K. Wilson’s Exact Renormalization Group (ERG)

Change of effective interactions under the change of scale:

⟨ϕ(x1) · · ·ϕ(xn)⟩Sτ ∼ en[(D−2)/2](τ−τ0)Z (τ, τ0)
n ⟨ϕ(eτ−τ0 x1) · · ·ϕ(eτ−τ0 xn)

⟩
Sτ0

Continuum QFT. Correlation length ξ = ξ0|K − Kc |−1/yE :

⟨φ(x1) · · ·φ(xn)⟩g
≡ lim
τ0→−∞

en[(D−2)/2](τ−τ0)Z (τ, τ0)
n

×
⟨
ϕ(eτ−τ0 x1) · · ·ϕ(eτ−τ0 xn)

⟩
Sτ0 ,K=Kc−ge−yE (τ−τ0)

Non-perturbative fixed point, relevant to particle physics?
Many-flavor gauge theories (Banks-Zaks fixed point)?
Asymptotically-safe gravity?
Gauge symmetry must be essential in these theories. . .
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ERG in scalar field theory: Wilson-Polchinski (WP) equation

Introduce a smooth momentum cutoff such as

K (p/Λ) = e−p2/Λ2

“Integrate out” momentum modes |p| > Λ to yield the Wilson action SΛ[ϕ]

SΛ[ϕ]: reaction under the change of UV cutoff Λ

Make everything dimensionless by taking Λ as a unit

Sτ [ϕ] (τ ∼ − lnΛ): reaction under the change of scale

WP equation:

∂

∂τ
eSτ [ϕ] =

∫
dDx

(
−2∂2 − D − 2

2
− γτ − x · ∂

∂x

)
ϕ(x) · δ

δϕ(x)
eSτ [ϕ]

+

∫
dDx (−2∂2 + 1− γτ )

δ

δϕ(x)
· δ

δϕ(x)
eSτ [ϕ]

(We have generalized as K (p)[1− K (p)]→ p2 and the anomalous
dimension is defined by γτ = ∂τ ln Z (τ, τ0))

Huge application in critical phenomena. . .
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ERG in gauge field theory

Local gauge transformation mixes different momentum modes:

Aa
µ(k)→ Aa

µ(k) + ikµχa(k)− g
∫

q
f abcχb(q)Ac

µ(k − q)

ψ(p)→ ψ(p)− g
∫

q
χa(q)T aψ(p − q)

ERG with momentum cutoff cannot keep a manifest gauge invariance

ERG keeps a modified gauge invariance (Becchi, Ellwanger,
Bonini-D’Attanasio-Marchesini, Reuter-Wetterich, Higashi-Itou-Kugo,
Igarashi-Itoh-Sonoda), but its precise form depends on the Wilson action
itself!

This prevents us to set a gauge-invariant ansatz or truncation for the
Wilson action. . .

. . . critical exponents can depend on the gauge fixing parameter. . .

ERG with manifest gauge invariance is highly desired

How to do that?
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Field diffusion and the Wilson action in scalar theory

We note an “integral representation” of the Wilson action:

eSτ [ϕ]

= ŝ
∫

[dϕ′]
∏

x

δ
(
ϕ(x)− e

∫ τ
τ0

dτ ′ [(D−2)/2+γτ′ ]ϕ′(t − t0, eτ−τ0 x)
)
(ŝ′)−1eSτ0 [ϕ

′]

Here, ϕ′(t , x) is the solution to the diffusion equation:

∂tϕ
′(t , x) = ∂2ϕ′(t , x), ϕ′(0, x) = ϕ′(x),

where the diffusion time is given by

t − t0 = e2(τ−τ0) − 1

Scrambler ŝ:

ŝ = exp
[

1
2

∫
dDx

δ2

δϕ(x)δϕ(x)

]
ERG and the field diffusion: Abe-Fukuma, Carosso-Hasenfratz-Neil,
Matsumoto-Tanaka-Tsuchiya
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Replace it by a gauge-covariant diffusion?

Yang-Mills gradient flow (Narayanan-Neuberger, Lüscher):

∂tA′a
µ (t , x) = D′

νF ′a
νµ(t , x) = ∂2A′a

µ (t , x) + · · · , A′a
µ (0, x) = A′a

µ (x)

For fermion (Lüscher):

∂tψ
′(t , x) = D′

µD′
µψ

′(t , x) ψ′(0, x) = ψ′(x)

∂t ψ̄
′(t , x) = ψ̄′(t , x)

←−
D ′
µ

←−
D ′
µ ψ̄′(0, x) = ψ̄′(x)

Imitating the scalar theory,

eSτ [A,ψ,ψ̄]

= ŝ
∫

[dA′dψ′dψ̄′]

×
∏

x,µ,a

δ
(

Aa
µ(x)− e

∫ τ
τ0

dτ ′ [(D−2)/2+γτ′ ]A′a
µ (t − t0, eτ−τ0 x)

)
×

∏
x

δ
(
ψ(x)− e

∫ τ
τ0

dτ ′ [(D−1)/2+γFτ′ ]ψ′(t − t0, eτ−τ0 x)
)

×
∏

x

δ
(
ψ̄(x)− e

∫ τ
τ0

dτ ′ [(D−1)/2+γFτ′ ]ψ̄′(t − t0, eτ−τ0 x)
)
(ŝ′)−1eSτ0 [A

′,ψ′,ψ̄′]

ŝ = exp
[

1
2

∫
dDx

δ2

δAa
µ(x)δAa

µ(x)

]
exp

[
−i

∫
dDx

−→
δ

δψ(x)

−→
δ

δψ̄(x)

]
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Good points of GFERG

GFERG keeps a manifest gauge invariance: If Sτ0 is invariant under
(gτ ≡ e−

∫ τ dτ ′ [(D−4)/2+γτ′ ])

Aa
µ(x)→ Aa

µ(x) + ∂µχ
a(x) + gτ f abcAb

µ(x)χ
c(x)

ψ(x)→ ψ(x)− gτχa(x)T aψ(x)

ψ̄(x)→ ψ̄(x) + gτχa(x)ψ̄(x)T a

then Sτ is invariant too.

GFERG keeps a modified exact chiral symmetry: If Sτ0 satisfies∫
dDx

{
Sτ

←−
δ

δψ(x)
γ5ψ(x) + ψ̄(x)γ5

−→
δ

δψ̄(x)
Sτ

+ 2iSτ
←−
δ

δψ(x)
γ5

−→
δ

δψ̄(x)
Sτ − 2i tr

[
γ5

−→
δ

δψ̄(x)
Sτ

←−
δ

δψ(x)

]}
= 0

then Sτ does too. This is a generalized Ginsparg-Wilson (GW) relation
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Wilson-Polchinski equation in GFERG

To diffuse gauge modes too, we introduce the Zwanziger1 like term,

∂tA′a
µ (t , x) = D′

νF ′a
νµ(t , x) + α0D′

µ∂νA′a
ν (t , x) etc.

(The gauge invariance holds even with this term)

Taking the τ derivative of the integral representation,

∂

∂τ
eSτ [A,ψ,ψ̄]

=

∫
dDx

δ

δAa
µ(x)

[
−2DνF a

νµ(x)− 2α0Dµ∂νAa
ν(x)

−
(

D − 2
2

+ γτ + x · ∂
∂x

)
Aa
µ(x)

]∣∣∣∣
A→A+δ/δA

eSτ [A,ψ,ψ̄]

+ (fermion)

Seemingly simple, but this contains functional derivatives up to 4th
order! (conventional ERG contains only up to 2nd order)

Price of the manifest gauge symmetry. . .

1More precisely, Nakagoshi-Namiki-Ohba-Okano (’83)
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1PI action Γτ

Conventionally, the so-called 1PI action Γτ (Nicoll-Chang, Wetterich,
Morris, Bonini-D’Attanasio-Marchesini) is employed in non-perturbative
study in ERG

We can also define the Legendre transformation in GFERG:

Aµ(x) = Aµ(x) +
δSτ

δAµ(x)

Ψ(x) = ψ(x) + i
−→
δ

δψ̄(x)
Sτ , Ψ̄(x) = ψ̄(x) + iSτ

←−
δ

δψ(x)

Γτ [Aµ,Ψ, Ψ̄]− 1
2

∫
dDx Aµ(x)Aµ(x) + i

∫
dDx Ψ̄(x)Ψ(x)

= Sτ [Aµ, ψ, ψ̄] +
1
2

∫
dDx Aµ(x)Aµ(x)− i

∫
dDx ψ̄(x)ψ(x)

−
∫

dDx Aµ(x)Aµ(x) + i
∫

dDx
[
Ψ̄(x)ψ(x) + ψ̄(x)Ψ(x)

]
Manifest gauge invariance and the modified chiral symmetry are kept,
although GFERG equation tends to be quite involved. . .
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Finiteness issue

I said as if GFERG is perfect, but there is a concern

In GFERG, UV cutoff is implemented effectively by the diffusion, not by
an explicit cutoff

Moreover, the diffusion contains interactions (for the gauge invariance)

So, it is not clear if GFERG defines a UV finite framework

Unfortunately, a perturbative analysis shows that it does not if the Wilson
action has no gauge fixing (we will see it later)

Our original objective was opposite; we wanted to understand the
“finiteness” of the gradient flow (Lüscher-Weisz) from ERG
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GFERG with gauge fixing?

Introduce Faddeev-Popov (FP) ghost-anti-ghost and Nakanishi-Lautrup
(NL) field

It is easy to make diffusion equations to commute with the conventional
BRST,

δAa
µ(x) = ∂µca(x) + gτ f abcAb

µ(x)c
c(x)

δca(x) = −1
2

gτ f abccb(x)cc(x)

δc̄a(x) = Ba(x)

δBa(x) = 0

However, a simple choice of the scrambler,

ŝ = exp
[∫

dDx
1
2

δ2

δAa
µ(x)δAa

µ(x)

]
× exp

[
−
∫

dDx
δ

δca(x)
δ

δc̄a(x)

]
exp

[
−
∫

dDx
1
2

δ2

δBa(x)δBa(x)

]
is not invariant under BRST; we go back to the modified BRST
symmetry. . .
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In abelian gauge theory, at least, we can circumvent the difficulty

FP ghost sector completely decouples and solvable:

Sghost =

∫
k

c̄(−k)
−k2

E(e−2τk2)e−2k2 + k2
c(k)

Gauge fixing term turns to be (note: ξ →∞ is no gauge fixing)

Sgauge fixing = −1
2

∫
k

Aµ(k)Aν(−k)
kµkν

ξτE(e−2τk2)e−2k2 + k2

BRST symmetry reduces to the Ward-Takahashi (WT) identity:

ikµ
δSτ

δAµ(k)
+

k2

ξτE(e−2τk2)e−2k2 ikµ
[
Aµ(−k) +

δSτ
δAµ(k)

]
− ieτ

∫
p
ψ̄(−p − k)

−→
δ

δψ̄(−p)
Sτ + ieτ

∫
p

Sτ
←−
δ

δψ(p + k)
ψ(p) = 0

This is linear in the Wilson action
In the conventional ERG, WT identity is infinite order in the Wilson action
Running of the gauge fixing parameter is controlled by the beta function:

∂τξτ = 2γτξτ , ∂τeτ =

(
4− D

2
− γτ

)
eτ
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WT identity in the conventional ERG

In the conventional ERG,

ξe−2k2
+ k2

ξe−k2 kµ
δSI

δAµ(k)

= ee−S
∫

p
e−(p+k)2+p2

Tr

{[
ψ(p) + i

−→
δ

δψ̄(−p)

]
eS

} ←−
δ

δψ(p + k)

− ee−S
∫

p
e−p2+(p+k)2 Tr

−→
δ

δψ̄(−p)

{
eS

[
ψ̄(−p − k) + i

←−
δ

δψ(p + k)

]}
,

where SI = S − S(0)

This is infinite order in the Wilson action S. Any ad-hoc ansatz would not
able to fulfill this relation exactly
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Illustration in U(1) gauged NJL model in 4D (ongoing with Sonoda)

Let us try some non-perturbative study in abelian gauge theory
GFERG for the 1PI action Γ :

∂τΓ +

∫
dD x

(
D − 2

2
+ γ + x · ∂ + 2∂2

)
Aµ(x) ·

δΓ

δAµ(x)

+

∫
dD x Γ

←−
δ

δΨ(x)

[
D − 1

2
+ γF + x · ∂ + 2∂2 − 4ieA(x) · ∂ − 2e2A(x)2

]
Ψ(x)

+

∫
dD x

[
D − 1

2
+ γF + x · ∂ + 2∂2 + 4ieA(x) · ∂ − 2e2A(x)2

]
Ψ̄(x) ·

−→
δ

δΨ̄(x)
Γ

=

∫
dD x

(
−
(

2∂2
x′ − 1 + γ

) δAµ(x′)

δAµ(x)
+ tr

(
2∂2

x′ −
1

2
+ γF

)
Ψ(x′)

←−
δ

δψ(x)

+ 4ieΓ

←−
δ

δΨ(x)

δ

δAµ(x′)
∂µΨ(x) − 4ie tr

Aµ(x′)∂µΨ(x′) +
δ

δAµ(x′′)
∂µΨ(x′)

 ←−
δ

δψ(x)

+ 2e2
Γ

←−
δ

δΨ(x)

{
Aµ(x)

δ

δAµ(x′)
Ψ(x)

+
δ

δAµ(x′)

[
Aµ(x′′)Ψ(x)

]
+

δ2

δAµ(x′)δAµ(x′′)
Ψ(x)

}

− 2e2 tr
{
Aµ(x′′)Aµ(x′′)Ψ(x′) +Aµ(x′′)

δ

δAµ(x′′)
Ψ(x′)

+
δ

δAµ(x′′)

[
Aµ(x′′′)Ψ(x′)

]
+

δ2

δAµ(x′′)δAµ(x′′′)
Ψ(x′)

} ←−
δ

δψ(x)
+ (ψ ↔ ψ̄)

)

Red containing the gauge coupling e are peculiar to GFERG; gauge
invariance requires them
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Illustration in U(1) gauged NJL model in 4D

Under GFERG, 1PI action Γ (besides the gauge fixing term) remains
invariant under the conventional gauge transformation:

δAµ(x) = ∂µχ(x), δΨ(x) = ieχ(x)Ψ(x), δΨ̄(x) = −ieχ(x)Ψ̄(x)

The naive gauge invariance in a naive ansatz, such as

Γ = −1
4

∫
dDx [∂µAν,−1(x)− ∂νAµ,−1(x)]2 −

1
2ξ

∫
dDx [∂µAµ,−1(x)]2

+ i
∫

dDx Ψ̄−1(x) [ /∂ − ie /A−1(x)−m] Ψ−1(x)

−
∫

dDx
{

GV
[
Ψ̄−1(x)γµΨ−1(x)

]2
+ GA

[
Ψ̄−1(x)γµγ5Ψ−1(x)

]2
}
,

is therefore preserved under GFERG!
In this ansatz, −1 variables are used; these are defined from the original
ones through diffusion equations
We also (approximately) impose the chiral symmetry by the GW relation:∫

dDx

[
Γ

←−
δ

δΨ−1(x)
γ5Ψ−1(x) + Ψ̄−1(x)γ5

−→
δ

δΨ̄−1(x)
Γ

]

−
∫

dDx tr

[
γ5Ψ(x ′)

←−
δ

δψ(x)
+

−→
δ

δψ̄(x)
Ψ̄(x ′)γ5

]
= 0
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Illustration in U(1) gauged NJL model in 4D

With the ansatz and truncation in powers of fields, we may do fully
non-perturbative study
This is laboriously very hard. So here let us be content with the
sub-regions:

1 e = 0, non-perturbative in m, GV ,A; this is the same as the conventional
ERG

2 To O(e2), corresponding to the 1-loop QED
3 [At the moment, we are working on O(GV ,Ae2) terms]

(GF)ERG flow of (GV/(16π2),GA/(16π2)) for e = 0

-0.3 -0.2 -0.1 0.0 0.1

-0.2

-0.1

0.0

0.1

0.2

We have 4 fixed points in this e = 0 subspace: 1 of them possesses 2
relevant directions, while 2 have a single relevant direction
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Illustration in U(1) gauged NJL model in 4D

Still, GFERG possesses an advantage over ERG
For e small, GFERG yields (these receive no correction from GV ,A)

∂τe2 = −2
1

(4π)2

8
3

e4, ∂τξ = 2
1

(4π)2

8
3

e2ξ,

e2 is marginally irrelevant and ξ →∞ in IR
GFERG flow in (ξ, e2) plane:

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

The direction of the gauge coupling is irrelevant (at least for e≪ 1)
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Illustration in U(1) gauged NJL model in 4D

Anomalous dimensions related to the fermion (in m→ 0):

γF =
3

(4π)2 e2, ∂τm =

[
1 +

6
(4π)2 e2

]
m

These are independent of ξ and physical

The perturbative computation of these, however, involves the integral∫
k

∂

∂kρ

[
kρ

kµkν
k2

ξe−2k2

ξe−2k2 + k2
e2k2
Ṽµν(−p,−k , k , p)

]

=

∫
k

∂

∂kρ

{
kρO(e−2k2

) if ξ is finite before the integration
kρO(1) if ξ →∞ before the integration

=

{
0 independent of ξ
∞ if ξ →∞ before the integration

This is the aforementioned finiteness problem without gauge fixing,
ξ =∞. . .
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Illustration in U(1) gauged NJL model in 4D

On the other hand, a naive application of ERG yields the flow in
(ξ, e2) plane:

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

e2 appears to be marginally relevant and one would think that the fixed
points on the e = 0 plane possess another relevant direction (this must
be wrong)

This illustrates the danger of the gauge non-invariant conventional ERG
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Summary

We formulated GFERG that keeps a manifest gauge invariance and a
modified chiral symmetry, at least formally

The finiteness issue, however, appears much serious than we expected
before

This requires the gauge fixing at least in perturbation theory

A manifest BRST symmetry in FP-NL sector is difficult to realize in a
simple form

We can circumvent this in abelian gauge theory; we want to pursue the
study of non-trivial fixed points in QED
(Aoki-Morikawa-Sumi-Terao-Tomoyose, Gies-Jaeckel,
Igarashi-Itoh-Pawlowski, Gies-Ziebell, . . . )

We need some breakthrough in non-Abelian theory; gauge fixing without
FP ghost as in the stochastic quantization?

Here, we have stuck to the continuum framework, i.e., not lattice), having
a generalization to gravity in mind. . .
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Backup: Modified correlation function (Sonoda 2015)

The conventional correlation function

⟨ϕ(p1) · · ·ϕ(pn)⟩Sτ =

∫
[dϕ] eSτ [ϕ]ϕ(p1) · · ·ϕ(pn)

does not exhibit a simple scaling relation

However, for the modified correlation function,

⟨⟨ϕ(p1) · · ·ϕ(pn)⟩⟩Sτ =

∫
[dϕ] eSτ [ϕ]ŝ−1ep2

1ϕ(p1) · · · ep2
nϕ(pn),

where

ŝ−1 = exp
[
−1

2

∫
p

δ2

δϕ(p)δϕ(−p)

]
,

one finds the exact scaling

⟨⟨ϕ(p1) · · ·ϕ(pn)⟩⟩Sτ
= e−n[(D+2)/2](τ−τ0)Z (τ, τ0)

n
⟨⟨
ϕ(e−(τ−τ0)p1) · · ·ϕ(e−(τ−τ0)pn)

⟩⟩
Sτ0

Quite often people say “integrating out”, but actually nothing is lost under
ERG flow; we can go back and forth between IR and UV!
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Backup: Critical exponents in the NJL model

In e = 0 subspace:

GV/(16π2) GA/(16π2) m exponents
0 0 0 −2, −2

−0.1545276 +0.0122904 −0.279097 +1.82664, +1.66678
−0.0506273 −0.0995112 +0.120272 −2.15652, +1.41817
−0.1317989 +0.0875545 −0.342978 −1.66246, +1.46644

The mass parameter m is determined by approximately solving the GW
relation (with the operator truncation)
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