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K. Wilson’s Exact Renormalization Group (ERG)

m Change of effective interactions under the change of scale:
<¢(X1) .. ¢(X")>s ~ e”[(D*Z)/z](T*TO)Z(T’ To)n <¢(eT*T°X1) .. ¢(677T°Xn)>s
8 o

“ie. 12.6. Renormalization group traiector

m Continuum QFT. Correlation length ¢ = &|K — K|~ '/e:
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= lim en[(D*Z)/2](‘F*To)Z(
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Non-perturbative fixed point, relevant to particle physics?
Many-flavor gauge theories (Banks-Zaks fixed point)?
Asymptotically-safe gravity?

Gauge symmetry must be essential in these theories. . .



ERG in scalar field theory: Wilson-Polchinski (WP) equation

Introduce a smooth momentum cutoff such as

K(p/N) = e 7/~

“Integrate out” momentum modes |p| > A to yield the Wilson action Sa[¢]
Sa[¢]: reaction under the change of UV cutoff A

Make everything dimensionless by taking A as a unit

S:[#] (- ~ —InA): reaction under the change of scale

WP equation:

QSTM_/ o, (_ope_D=-2 0 0 s
5. € = [ d"x (20 5 Ve X o d(x) 6¢(x)e
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(We have generalized as K(p)[1 — K(p)] — p? and the anomalous
dimension is defined by v» = 9; In Z(r, 7))
m Huge application in critical phenomena. ..



ERG in gauge field theory

m Local gauge transformation mixes different momentum modes:
AL(K) — AL(K) + k(K / 2 °(Q)AL (K — )
W(p) = V(P / ) T%(p — 9)

m ERG with momentum cutoff cannot keep a manifest gauge invariance

m ERG keeps a modified gauge invariance (Becchi, Ellwanger,
Bonini-D’Attanasio-Marchesini, Reuter-Wetterich, Higashi-ltou-Kugo,
Igarashi-ltoh-Sonoda), but its precise form depends on the Wilson action
itself!

m This prevents us to set a gauge-invariant ansatz or truncation for the
Wilson action. ..

. critical exponents can depend on the gauge fixing parameter. . .
m ERG with manifest gauge invariance is highly desired
m How to do that?



Field diffusion and the Wilson action in scalar theory

m We note an “integral representation” of the Wilson action:
&Sl

=3/ W’]Hcs p(x) — &/ IR (¢ gy 67 0x)) (3) el

Here, ¢'(t, x) is the solution to the diffusion equation:
(9[(]5’(1,)() :82¢/(t7X)7 ¢l(07X) = ¢I(X)7
where the diffusion time is given by
t—thp =€) 1
Scrambler :
§—exp |:1/de672
2 5 (x)d9(X)

m ERG and the field diffusion: Abe-Fukuma, Carosso-Hasenfratz-Neil,
Matsumoto-Tanaka-Tsuchiya



Replace it by a gauge-covariant diffusion?

m Yang-Mills gradient flow (Narayanan-Neuberger, Lischer):

A2t x) = DLFA(t,x) = PA(LX)+---,  AX0,x) = A%(x)
m For fermion (LUscher):
' (t,x) = D, D' (t,x) ¥'(0,x) =4’ (x)
n <—/ <—/ " T/
o' (t,x) = ' (t,x)D;, D), P'(0,x) = ¥’ (x)
m |mitating the scalar theory,
&S Y7l
_3 / [dA dy dif]
x TT 6 (An(x) — el 1OBE0 gt gy 67 0x))
X,u,a

% H6 (’l/)(x f dr’ [(D— 1)/2+’YF,./]1/}/(t o to,eT_TOX))

< [1¢ (w(x) el 0N Ty eT*T°x)) (&) Sl 7
X

. 1 5 . Ft
S§=exp {E/d’)x 75%()()6%()()} exp {—//de 55) M_}(X)]
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Good points of GFERG

m GFERG keeps a manifest gauge invariance: If S;, is invariant under
(g =€ J7ar’ [(D—4)/2+‘/7—/])

ALX) = ALX) + 0ux*(X) + G-I AL ()X (%)
P(x) = Y(X) = g-X(X) T7(x)
D(x) = P(x) + g X () P(x) T?
then S; is invariant too.
m GFERG keeps a modified exact chiral symmetry: If Sy, satisfies

b 5
/ d°x { 53000 + s s S
? ?

+2i8; — 2itr 'y5_i3 l =0
50(x) ° 59(x) ) db(x) " 0p(x)

then S: does too. This is a generalized Ginsparg-Wilson (GW) relation



Wilson-Polchinski equation in GFERG

m To diffuse gauge modes too, we introduce the Zwanziger' like term,
AAZ(t, x) = D, F2(t, x) + a0 D, 0, AZ(t, x) etc.

(The gauge invariance holds even with this term)
m Taking the 7 derivative of the integral representation,

a -
9 SrlAv.d)

:/de

Af 5 {—2DVF5M(X) — 200D, 8, A3(x)
(%4‘ +x- 8—)Aa( )]

m Seemingly simple, but this contains functional derivatives up to 4th
order! (conventional ERG contains only up to 2nd order)

oS 1A. ]
A—A+5/5A

+ (fermion)

m Price of the manifest gauge symmetry. ..

"More precisely, Nakagoshi-Namiki-Ohba-Okano ('83)



1Pl action I,

m Conventionally, the so-called 1P action I"- (Nicoll-Chang, Wetterich,
Morris, Bonini-D’Attanasio-Marchesini) is employed in non-perturbative

study in ERG
m We can also define the Legendre transformation in GFERG:
0S5,
A#(X) - A#(X) + 6AM(X)
(_
W(x X)+i—— U(x x)+iS;
() = ¥(0) w() (x) = B(x) M,(X)

T[99 - ) / APx A (X) A (X) + i / dPx (X)W (x)
=S [A., ¥, 9] + 1 / d°x AL (X)Au(x) — i / d®x i (x)ep(x)
= [ dPxALAL) + 1 [ dx [BOR00) + G00W(0)]

m Manifest gauge invariance and the modified chiral symmetry are kept,
although GFERG equation tends to be quite involved. ..



Finiteness issue

| said as if GFERG is perfect, but there is a concern

m In GFERG, UV cutoff is implemented effectively by the diffusion, not by
an explicit cutoff

m Moreover, the diffusion contains interactions (for the gauge invariance)

m So, it is not clear if GFERG defines a UV finite framework

m Unfortunately, a perturbative analysis shows that it does not if the Wilson
action has no gauge fixing (we will see it later)

m Our original objective was opposite; we wanted to understand the
“finiteness” of the gradient flow (Lischer-Weisz) from ERG
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GFERG with gauge fixing?

m Introduce Faddeev-Popov (FP) ghost-anti-ghost and Nakanishi-Lautrup
(NL) field

m |t is easy to make diffusion equations to commute with the conventional
BRST,

§A%(x) = 8,6%(x) + g- PP AL (x)c°(X)
6c?(x) = f%gffabccb(x)CC(x)

5ci(x) = B¥(x)

B (x) =

m However, a simple choice of the scrambler,

s=e U X s 6Az(x)}

X exp {— / d°x 503()() 555()()} P {_ / dx %W;B"(X)

is not invariant under BRST; we go back to the modified BRST
symmetry. ..
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In abelian gauge theory, at least, we can circumvent the difficulty

m FP ghost sector completely decouples and solvable:
_ —k?
Sghost = /k C(*k) E(e_szz)e_zk2 + k2 C(k)
m Gauge fixing term turns to be (note: £ — oo is no gauge fixing)

1 kuk
sgauge fixing — *é/k Au(k)AV(*k) gTE(e*ZTk‘;)e*Z"Z + k2

m BRST symmetry reduces to the Ward-Takahashi (WT) identity:

. 0S: K2 3S;
IkuéA ( )+ fr (e—27k2)e 2k2 |: M( k) 5Au(k):|
—
1)
Ie7—/"¢Y )S + eT/S W’L/}(p)_o

This is linear in the Wilson action
m In the conventional ERG, WT identity is infinite order in the Wilson action
m Running of the gauge fixing parameter is controlled by the beta function:

87'57' = 2’}/7&7', aTeT = (% - 77) er
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WT identity in the conventional ERG

m In the conventional ERG,

e L Kk2 55
g SALK)
%

_ eefs/ e,(p+k)2+P2 Tr{ 1/)(P) + 1515(?_p):| es} &Z)(pé_'_ k)
p

2 2 5 - é
_ - —p=+(p+k) v S o i 9
ee /pe Tr 57p) {e [w( p k)+15w(p+k)

},

m This is infinite order in the Wilson action S. Any ad-hoc ansatz would not
able to fulfill this relation exactly

where §; = S — S©
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lNustration in U(1) gauged NJL model in 4D (ongoing with Sonoda)

m Let us try some non-perturbative study in abelian gauge theory
m GFERG for the 1Pl action I":

p (b-2 2
8,—F+/dx +y+x-0+20%) Ap(x) -
2 SAL(X)

—

D L 2, . 2 42
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m Red containing the gauge coupling e are peculiar to GFERG; gauge

invariance requires them
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lllustration in U(1) gauged NJL model in 4D

m Under GFERG, 1Pl action I" (besides the gauge fixing term) remains
invariant under the conventional gauge transformation:

SAL(X) = Bux(x),  SW(x) = iex()VW(x),  dV¥(x) = —iex(x)¥(x)
m The naive gauge invariance in a naive ansatz, such as

F——f/de [0, AL, _1(X) — 8L A, _1(X)] — /de [0, A, _1(X)]?
+ i/ d’x W _4(x)[® — ieA_1(x) — mW_4(x)

~ [ @ { @ [B-100mY-1(0F + Ga [F-1 (a1 (0]}

is therefore preserved under GFERG!

m In this ansatz, —1 variables are used; these are defined from the original
ones through diffusion equations

m We also (approximately) impose the chiral symmetry by the GW relation:

] &
—/detr

)75‘1’ 1)+ V1 (X)15—=——

sW(x")
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lllustration in U(1) gauged NJL model in 4D

m With the ansatz and truncation in powers of fields, we may do fully
non-perturbative study

m This is laboriously very hard. So here let us be content with the
sub-regions:

e = 0, non-perturbative in m, Gy 4; this is the same as the conventional
ERG

To O(€?), corresponding to the 1-loop QED
[At the moment, we are working on O(GV,AeZ) terms]
m (GF)ERG flow of (Gy/(167?), Ga/(1672)) for e = 0

02
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0.0
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/‘\ N
\
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Wy

-03 -0.2 -0 0.0 0.1

m We have 4 fixed points in this e = 0 subspace: 1 of them possesses 2
relevant directions, while 2 have a single relevant direction

ool LAY
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lllustration in U(1) gauged NJL model in 4D

m Still, GFERG possesses an advantage over ERG
m For e small, GFERG yields (these receive no correction from Gy a)

1 8, .1 8
@ne3s =23

0,6° = -2 e’¢,

m ¢° is marginally irrelevant and &€ — oo in IR
m GFERG flow in (¢, €°) plane:

m The direction of the gauge coupling is irrelevant (at least for e <« 1)
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lllustration in U(1) gauged NJL model in 4D

m Anomalous dimensions related to the fermion (in m — 0):

3 2 _ 6
7”—7(4”)23’ afm_{1+—(47r)2e}m

These are independent of £ and physical
m The perturbative computation of these, however, involves the integral

—2k?
/k 3% {k fuk <@ ezszju (—p,—k,k,p)}
P

P K2 ce2K 4 k2

7/ 0 pr(e*kz) if ¢ is finite before the integration
~ Jk 9k, | k,0(1) if € — oo before the integration
_J0 independent of £

~ | oo if € — oo before the integration

m This is the aforementioned finiteness problem without gauge fixing,
£ =o00...
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lllustration in U(1) gauged NJL model in 4D

m On the other hand, a naive application of ERG yields the flow in
(¢, €°) plane:

m ¢ appears to be marginally relevant and one would think that the fixed
points on the e = 0 plane possess another relevant direction (this must
be wrong)

m This illustrates the danger of the gauge non-invariant conventional ERG
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We formulated GFERG that keeps a manifest gauge invariance and a
modified chiral symmetry, at least formally

The finiteness issue, however, appears much serious than we expected
before

m This requires the gauge fixing at least in perturbation theory
m A manifest BRST symmetry in FP-NL sector is difficult to realize in a

simple form

We can circumvent this in abelian gauge theory; we want to pursue the
study of non-trivial fixed points in QED
(Aoki-Morikawa-Sumi-Terao-Tomoyose, Gies-Jaeckel,
Igarashi-ltoh-Pawlowski, Gies-Ziebell, . ..)

We need some breakthrough in non-Abelian theory; gauge fixing without
FP ghost as in the stochastic quantization?

Here, we have stuck to the continuum framework, i.e., not lattice), having
a generalization to gravity in mind. ..
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Backup: Modified correlation function (Sonoda 2015)

m The conventional correlation function
(0pr)-+ 6(po)s, = [ 1001 Po(pr) - 6(py)

does not exhibit a simple scaling relation
m However, for the modified correlation function,

(6(pr) - d(Pn)) s / 0] 515~ e 6(py) - % 5(pn),

where
- -vol 4 [ca)
6p(p)sp(—p)
one finds the exact scaling
{o(p1) - d(pn))s.
_ eff7[(D+2)/2](7'*70)2(7_7 70)" <<¢(ef(‘r*70)p1) L. ¢(ef(7770)p,,)>>

Sry

m Quite often people say “integrating out”, but actually nothing is lost under
ERG flow; we can go back and forth between IR and UV!
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Backup: Critical exponents in the NJL model

m In e = 0 subspace:

Gv/(167%) | Ga/(167°) m exponents

0 0 0 —-2,-2
—0.1545276 | +0.0122904 | —0.279097 | +1.82664, +1.66678
—0.0506273 | —0.0995112 | +0.120272 | —2.15652, +1.41817
—0.1317989 | +0.0875545 | —0.342978 | —1.66246, +1.46644

The mass parameter m is determined by approximately solving the GW
relation (with the operator truncation)

22/22



