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• Cycles on the graph play an important role in gauge and string 
theory 

‣ Wilson loops in lattice gauge theory: 
 
 
 
 
 

‣ Gauge invariant operators in quiver gauge theory:
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• We propose a modification of the Kazakov-Migdal model defined on 
the generic graphs 

　　 　　  

• This model has an interesting phase structure depending on the 
graph in the large N limit 

• We also show numerical simulations to support our analytical results

Introduction



• Kazakov-Migdal model is defined by unitary matrices  on links 
(edges) and hermite matrices  on sites (vertices) as D-
dimensional lattice gauge theory [Kazakov and Migdal (1992)]: 
 
 

• After eliminating , we get 
 
 
 
where  is a induced action given by 
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Kazakov-Migdal Model

S = ∑
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• We replace the adjoint scalar field  by a scalar field in the fundamental representation, 
which violates the local  symmetry 

• We also generalize the KM model to one on the generic graph 
 
 
 
where  ,  and  are a set of the vertices and edges,  and  are vertices at 
source and target of the edge, respectively 

• If we tune the “mass” by 
 
 
the partition function is expressed in terms of the graph zeta function (Ihara zeta function) 
 
 
 
 
where  is a overall coupling constant,  is a rank of the gauge group, , 

 and  is the unitary matrix weighted Ihara zeta function
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Fundamental Kazakov-Migdal (FKM) Model
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• Using this Euler product expression, we can see the graph zeta 
function is a generating function of the possible Wilson loops on 
the graph without backtrackings nor bumps 

• Recall the Euler product expression of the Riemann zeta function 
 
 
 

Ihara Zeta Function

ζ(s) = ∏
p: prime numbers

1
1 − p−s

• The (unitary matrix weighted) graph zeta function is defined by 
 
 
 
 
where  is a unitary matrix weighted adjacency matrix and  is a diagonal degree matrix 

• This graph zeta function has the following Euler product like expression 
 
 
 
 
where  is a Wilson loop along a “prime” cycle 

AU D

WC C

ζG(q; U) = ∏
C: prime cycles

1

det (1Nc
− q|C|WC)
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1
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− qAU + q2(D − 1NcnV

)) -deformed 
graph Laplacian
q



• Using the Euler product expression of the graph zeta function, 
we obtain the following induced action 
 
 
 
where  

• This induced action reduces to the Wilson action in the limit of 
 and  with  fixed 

(  is a shortest length of the cycles (plaquette) ) 

• By definition, the Wilson loops appearing in the action do not 
contain the backtracking nor bump

γ = Nf /Nc

q → 0 γ → ∞ λ ≡ 1/γql

l

Induced Action
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∞

∑
n=1

1
n

qn|C| (Tr Wn
C + Tr W†n

C )



• If we define the coupling  by  , where  is the inverse 
of the largest convergence circle of ,  we can see the 
following functional equation 
 
 
for the regular graphs , which is an analog of the functional 
equation of the Riemann zeta function 

• This functional equation means that there exists a duality 
between  and  

• For the general graphs, the approximate duality still holds

q q ≡ ω−s ω
ζG(q; U)

G

q 1/ωq

Strong/Weak Duality

ζG(s; U) ∼ ζG(1 − s; U)



• From the functional equation, we can find that all the poles of the graph zeta function 
exist in the critical strip region  

• For the regular graph, all non-trivial poles are on the critical line  
   Riemann hypothesis 
 
 
 
 
 
 
 
 
 

• The FKM model becomes unstable in the critical strip, 
since the -deformed graph Laplacian 
           
could contain the negative eigenvalues

0 ≤ Re s ≤ 1

Re s = 1/2
⇒
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• In the FKM model, the GWW phase transition occurs for each cycle (Wilson loop) 

• We can solve analytically by using the large N decomposition and saddle point 
approximation 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gross-Witten-Wadia Phase Transition

⟨ 1
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• The double triangle graph is obtained by removing one edge 
from the tetrahedron ( ) 
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• The triangle-square graph contains length 3 and 4 fundamental cycles 

• There is an intermediate phase 
 
 
 
 
 
 
 
 
 
 
 
 

Example 2: Triangle-Square

Almost dual

Triangle-Square

, Nc = 16 γ = 1024



• We proposed a generalization of the Kazakov-Migdal model on 
the graph, which reproduces the weighted Ihara zeta function 

• The graph Kazakov-Migdal model generates the countable 
Wilson loops systematically 

• We can see the interesting “physics” like GWW phase transition 
in the graph zeta function model 

• We are also interested in the continuous limit of the graph (grid 
graph), which is closely related to mathematics like -function 
or Selberg’s trace formula
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