On THE CLASSIFICATION OF 6D SUPERGRAVITIES

Gregory J. Loges

[2311.00868] w/ Yuta Hamada
KEK Theory Workshop

$$
2023-11-30
$$

The plan

- Motivation
- $6 \mathrm{~d} \mathcal{N}=(1,0)$ SUGRA \& its consistency conditions
- Multigraphs, cliques \& classification
- Thoughts

Motivation

- Absence of gauge anomalies is a nontrivial condition required of gauge theories with chiral matter (e.g. SM, MSSM)
- Gravitational anomaly cancellation is especially constraining in dimensions $d=2,6,10$
- String universality: much recent progress in $d \geq 7$
[Kim, Tarazi, Vafa - 19] [Kim, Shiu, Vafa - 19] [Montero, Vafa - 21] [Bedroya, Hamada, Montero, Vafa - 22] ...

Consistency Conditions

6d supergravity

$\mathcal{N}=(1,0)$ supermultiplets:

$$
\text { gravity : }\left(g, \Psi, B^{-}\right) \quad \text { tensor : }\left(B^{+}, \chi, \phi\right) \quad \text { vector : }(A, \lambda) \quad \text { hyper : }(\psi, \varphi)
$$

Pick (T, G, \mathcal{H}) :

- $T \geq 0$ (\# tensor multiplets)
- Gauge group $G=\prod_{i=1}^{k} G_{i}$
- Hypermultiplets $\mathcal{H}=\left\{n \times\left(R_{1}, \ldots, R_{k}\right)\right\}$

Anomaly-cancellation

The Green-Schwarz mechanism requires the anomaly polynomial to factorize:

$$
\begin{aligned}
I_{8} & =I_{\mathrm{grav}}-T I_{\mathrm{tensor}}+I_{1 / 2}^{\mathrm{Adj}}-\sum_{R} I_{1 / 2}^{R} \quad \stackrel{!}{=} \quad X_{4} \cdot X_{4} \\
X_{4}^{\alpha} & =-\frac{1}{2} b_{0}^{\alpha} \operatorname{tr} \mathcal{R}^{2}+\sum_{i} 2 b_{i}^{\alpha} \operatorname{tr} F_{i}^{2}, \quad X_{4}, b_{0}, b_{i} \in \mathbb{R}^{1, T}
\end{aligned}
$$

Matching terms on either side, there are irreducible terms which must vanish:

$$
(H-V+29 T-273) \operatorname{tr} \mathcal{R}^{4}, \quad\left(\sum_{R} n_{R}^{i} B_{R}^{i}-B_{\mathrm{Adj}}^{i}\right) \operatorname{tr} F_{i}^{4}
$$

The other terms determine all inner products amongst the vectors $b_{I}=b_{0}, b_{i}$, e.g.

$$
b_{0} \cdot b_{0}=9-T, \quad b_{i} \cdot b_{i}=\frac{1}{3}\left(\sum_{R} n_{R}^{i} C_{R}^{i}-C_{\mathrm{Adj}}^{i}\right), \ldots
$$

Collect into a Gram matrix

$$
\mathbb{G}_{I J}=b_{I} \cdot b_{J}
$$

$$
\begin{aligned}
& \operatorname{tr}_{R} F_{i}^{2}=A_{R}^{i} \operatorname{tr} F_{i}^{2} \\
& \operatorname{tr}_{R} F_{i}^{4}=B_{R}^{i} \operatorname{tr} F_{i}^{4}+C_{R}^{i}\left(\operatorname{tr} F_{i}^{2}\right)^{2}
\end{aligned}
$$

Consistency conditions

- Anomaly-cancellation:

$$
H_{\mathrm{ch}}-V \leq 273-29 T \quad \sum_{R} n_{R}^{i} B_{R}^{i}=B_{\text {Adj }}^{i} \text { for each } G_{i} \quad n_{+}(\mathbb{G}) \leq 1, n_{-}(\mathbb{G}) \leq T
$$

gravitational bound

■ Absence of global/Witten anomalies

- Positivity: from SUSY, gauge kinetic terms are $-\left(j \cdot b_{i}\right) \operatorname{tr} F_{i}^{2}$ for some moduli-dependent $j \in \mathbb{R}^{1, T}$. Need $\exists j$ with $j \cdot j>0, j \cdot b_{i}>0$

■ Unimodularity: $\Lambda=\bigoplus b_{I} \mathbb{Z}$ is always an integer lattice, but also need $\Lambda \hookrightarrow \Gamma_{1, T}$ with $\Gamma_{1, T}$ unimodular (integer and self-dual)

Classification

Outline

Previously...

- With $T<9\left(b_{0} \cdot b_{0}>0\right)$ the number of anomaly-free $6 \mathrm{~d}, \mathcal{N}=(1,0)$ supergravities is known to be finite [Kumar, Taylor - 09] [Kumar, Morrison, Taylor - 10]
- Classification for $T=0,1$ and/or simple gauge groups is well understood
[Avramis, Kehagias - 05] [Kumar, Park, Taylor - 10] ...
What's new:
- Classify in a T-agnostic way
- Any hyper representations
- Gauge groups with any number of simple factors

Technical limitations:

- no $\mathrm{U}(1), \mathrm{SU}(2)$ or $\mathrm{SU}(3)$ simple factors
- no (3+)-charged hypers
- eight choices of hypers for gauge groups E_{n}, F_{4} are removed (* more on this later)

Outline

$\left.\begin{array}{l}\text { - Gauge/grav/mixed } \\ \text { anomalies } \\ \text { - Positivity } \\ \text {-Unimodularity }\end{array}\right) \xrightarrow[\begin{array}{c}\text { "Decomposition" }\end{array}]{\substack{\text { Classification } \\ \text { and pair-wise compatibility } \\ \text { of simple theories }}}$

Main idea: "decomposition"

All of the consistency conditions except for the gravitational bound behave nicely upon "decomposition"

$$
\begin{gathered}
G=G_{1} \times G_{2} \times \cdots \times G_{k}, \\
\Lambda=\left\langle b_{0}, b_{1}, \ldots, b_{k}\right\rangle \subseteq \Gamma \subset \mathbb{R}^{1, T}, \\
\exists j: j \cdot b_{i}>0, \text { etc }
\end{gathered}
$$

$$
\begin{array}{cc}
G^{\prime}=G_{1} \times G_{2} \times \cdots \times G_{m}, & G^{\prime \prime}=G_{m+1} \times G_{m+2} \times \cdots \times G_{k}, \\
\Lambda^{\prime}=\left\langle b_{0}, b_{1}, \ldots, b_{m}\right\rangle \subseteq \Gamma \subset \mathbb{R}^{1, T}, & \Lambda^{\prime \prime}=\left\langle b_{0}, b_{m+1}, \cdots, b_{k}\right\rangle \subseteq \Gamma \subset \mathbb{R}^{1, T}, \\
\exists j: j \cdot b_{i \leq m}>0, \text { etc } & \exists j: j \cdot b_{i>m}>0, \text { etc }
\end{array}
$$

Strategy: reverse this procedure by understanding the theories with simple gauge group and how they can be recombined

Multigraphs and cliques

- Vertex: solution of B-constraint for some simple group
- Edge: "admissible" choice of bi-charged hypers

- Clique: collection of k vertices, all pair-wise connected by edges

$$
\begin{aligned}
& G=\mathrm{SU}(8) \times \mathrm{SU}(10) \times \mathrm{SU}(10) \\
& \mathcal{H}=(\square, \square, \bullet)+(\square, \bullet, \square)+\ldots \\
& \mathbb{G}=\left(\begin{array}{rrrr}
9-T & 5 & 2 & 2 \\
5 & 3 & 1 & 1 \\
2 & 1 & 1 & 1 \\
2 & 1 & 0 & 0
\end{array}\right) \quad H_{\mathrm{ch}}-V=363 \quad T \geq 1
\end{aligned}
$$

Classification

An anomaly-free clique either...

- . . . has one or more copies of

$$
\begin{aligned}
& E_{6}+\emptyset, \quad E_{6}+\underline{27}, \quad E_{7}+\emptyset, \quad E_{7}+\frac{1}{2} \underline{56}, \\
& E_{7}+\underline{56}, \quad E_{7}+\frac{3}{2} \underline{56} \quad E_{8}+\emptyset, \quad F_{4}+\emptyset
\end{aligned}
$$

and is part of a (large!) infinite family, or

- . . is composed of irreducible cliques which are individually bounded as

$$
0 \leq\left(\Delta+28 n_{-}\right) \leq(273-T) \leq 273
$$

and joined together by trivial edges.
\Longrightarrow These irreducible cliques can be
 systematically enumerated.

Clique construction: branch \& prune

Clique construction: branch \& prune

Clique construction: branch \& prune

Clique construction: branch \& prune

Results: irreducible cliques

Cliques split into irreducible pieces,

$$
\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \cdots
$$

for which $H_{c h}-V$ and $n_{ \pm}$add nicely:

$$
\begin{aligned}
H_{\mathrm{ch}}-V & =\sum_{j}\left(H_{\mathrm{ch}}-V\right)_{j} \\
n_{ \pm} & =\sum_{j}\left(n_{ \pm}\right)_{j}
\end{aligned}
$$

For all combinations of $\operatorname{SU}(5-25)$, $\mathrm{SO}(7-33), \mathrm{Sp}(3-16), E_{6,7,8}, F_{4}, G_{2}$ there are $\mathcal{O}\left(10^{8}\right)$ irreducible cliques

Summary \& Thoughts

- Anomaly cancellation and the Green-Schwarz mechanism
- $6 \mathrm{~d} \mathcal{N}=1$ supergravity and its consistency conditions
- "Decomposition" \& pair-wise compatibility $\quad \Longrightarrow \quad$ multigraph and algorithmically constructing k-cliques
- Characterization of infinite families w/ eight problematic vertices
- Two sided bounds and T-independent enumeration of irreducible cliques
- We now have a large ensemble of consistent theories: which appear in string theory?
- to have a geometric F-theory realization need to satisfy Kodaira condition
- additional conditions from BPS strings (e.g. see [Kim, Shiu, Vafa - 19])

- There are three non-trivial homotopy groups:

$$
\pi_{6}(\mathrm{SU}(2)) \cong \mathbb{Z}_{12}, \quad \pi_{6}(\mathrm{SU}(3)) \cong \mathbb{Z}_{6}, \quad \pi_{6}\left(G_{2}\right) \cong \mathbb{Z}_{3}
$$

These groups are subject to an additional constraint:

$$
\sum_{R} n_{R}^{i} C_{R}^{i}-C_{\mathrm{Adj}}^{i} \equiv 0 \quad \bmod 12,6,3 \quad \text { i.e. } \quad b_{i} \cdot b_{i} \in 4 \mathbb{Z}, 2 \mathbb{Z}, \mathbb{Z}
$$

- There can be half-hypermultiplets for quaternionic representations, but only if A_{R} is even. An odd number of half-hypermultiplets is anomalous if A_{R} is odd (e.g. fundamentals of $\operatorname{Sp}(N)$ must occur as full-hypermultiplets)

$$
\begin{aligned}
G & =\mathrm{SU}(10) \\
\mathcal{H}_{\mathrm{SU}(10)} & =7 \times \underline{\mathbf{1 0}}+5 \times \underline{\mathbf{4 5}}+8 \times \underline{\mathbf{1 2 0}}+3 \times \underline{\mathbf{2 1 0}}+\frac{1}{2} \times \underline{\mathbf{2 5 2}}+2 \times \underline{\mathbf{8 2 5}}+\underline{\mathbf{9 9 0}}+2 \times \underline{\mathbf{1 8 4 8}} \\
H_{\mathrm{ch}} & \left.-V=8 n_{R} B_{R}=B_{\text {Adj }}\right) \\
\mathbb{G} & =\left[\begin{array}{cc}
9-3 & 473 \\
473 & 895
\end{array}\right] \quad \begin{array}{l}
b_{0}=(3,1,1,1) \\
b_{1}=(103,-77,-44,-43) \quad=j
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& G^{\prime}=\mathrm{SU}(10) \times E_{8}^{m} \\
& \mathcal{H}_{\mathrm{SU}(10)}=7 \times \underline{\mathbf{1 0}}+5 \times \underline{\mathbf{4 5}}+8 \times \underline{\mathbf{1 2 0}}+3 \times \underline{\mathbf{2 1 0}}+\frac{\mathbf{1}}{2} \times \underline{\mathbf{2 5 2}}+2 \times \underline{\mathbf{8 2 5}}+\underline{\mathbf{9 9 0}}+2 \times \underline{\mathbf{1 8 4 8}} \\
&\left(H_{\mathrm{ch}}-V\right)^{\prime}=8248-248 m \\
& \mathbb{G}^{\prime}\left.=\left[\begin{array}{ccc}
9-T^{\prime} & 473 & -10_{m} \\
473 & 895 & 0_{m} \\
-10_{m} & 0_{m} & -12 \mathbb{I}_{m \times m}
\end{array}\right] \quad \frac{10^{2}}{12} m+3 \leq T_{\mathrm{Adj}}\right) \leq \frac{273-8248+248 m}{29} \\
& \text { and take } j=j^{1} b_{1}-\left(b_{2}+b_{3}+\cdots+b_{m+1}\right) \text { with } j^{1}>\sqrt{12 m / 895} .
\end{aligned}
$$

The first T^{\prime}, m which work are $T^{\prime}=32,251$ and $m=12,093$

