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Hawking Radiation
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Information loss paradox

a=2GM: Schwarzschild radius
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Thermal distribution Ny, (u > a) = — 77—

with temperature T = 1/4na.
(Black holes No Hair Theorem)
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[ Information of the collapsing matter lost ]

Black hole life time~0(a3/L%)



Trans-Planckian Problem(1/2)
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collapsing null shell
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After scrambling time
u~0(aln(a/Lp)),

the shell with

Hawking particle reaches

trans-Planckian energy.
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Since UV physics comes
into play, Hawking
Radiation may not be a
valid prediction.
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Trans-Planckian Problem(2/2)
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is quite insensitive to UV physics.(e.g. renormalizable
interaction, modified dispersion relation, GUP...)
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However, people found that Hawking Radiation(temperature)
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Hawking Radiation is not a probe of UV physics.
Information loss paradox persists.
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Recently, Prof. Ho ,Kawai-san and Yokokura-san discovered
that considering non-renormalizable interactions, Hawking
radiation encounters order one corrections
after the scrambling time.
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Linear Dispersion(1/2)

1. Measuring a particle at time u,
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2. Evolve it backward in time

3. Match with the flat-space mode
4. Calculate number operator VEV
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Minkowski vacuum

When tracing Hawking
particles backwards, they
follow geometric optics
approximation and pile up

in front of the horizon.
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The distortion of the A

wavepacket leads to the
positive and negative

frequency mixing.
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Linear Dispersion(1/2)

1 Hawking Radiation strength
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Monotonic Dispersion(1/2)

= |w=90)/?2
One possible UV feature is the

breakdown of Lorentz symmetry
at high energy such that the
dispersion is no longer linear.
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Hawking particles after the
scrambling time approach the
horizon with slower rate or
event stop in front of it.
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Monotonic Dispersion(1/2)
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o 4 Since this distortion of the A

: : wavpeacket is already there in
the near horizon region. The
different trajectory doesn’t

\_ modify Hawking radiation. Y

(However, The geometric optics\
breaks down within the
Planckian distance from the
horizon. The wavepacket has
\_ supportinside the horizon. )
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Non-monotonic Dispersion(1/4)
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Non-monotonic Dispersion(2/4)
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v The non-monotonic dispersion

leads Hawking particle bounce
off from the horizon.
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The non-locality and bounce-off
together make Hawking particle

tunneling across the horizon.

tunneling
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After the tunneling, Hawking

particle approaches the
- blackhole singularity.

[
|
|
|
|
|
|
|
|
|
|
|

a




Non-monotonic Dispersion(3/4)

If g(p) decays faster than O(1/p),
v Av is finite and Hawking particle hits
the singularity in finite time.
Hawking radiation is then turned off.
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Non-monotonic Dispersion(4/4)

Hawking
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Summary

* Hawking radiation is found to be turned off after
the scrambling time if the dispersion decays faster

than O(1/p).

* The turned-off time depends on the details of
dispersion relation: how long it takes for Hawking
particle to hit the singularity.

* Hawking radiation after that depends on the
boundary condition at the singularity.

* Trans-Planckian problem is still there, the
information loss paradox of low energy effective
theory is dismissed.
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