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Bulk operator reconstruction in AdS/CFT
Bulk operators in the causal wedge
corresponding to a boundary sub-region can be
reconstructed from the CFT operator on the
sub-region.

ϕ(x) =

∫
dY K(x;Y )O(Y ) (1)

Denote the bulk operator ϕ reconstructed by
sub-region A ∪B by ϕAB and the boundary
operator on the sub-region C by OC .
From the locality of field theory,

[ϕAB ,OC ] = [ϕAC ,OB ] = [ϕBC ,OA] = 0. (2)

(Radial commutativity)

Figure: Bulk operator reconstruction.
From[Harlow, 2017]

Suppose ϕ = ϕAB = ϕBC = ϕAC . By Schur’s lemma, ϕ ∝ I.
⇒This is paradox.
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AdS/CFT and quantum error correction
3qutrit code

Combine three 3-level systems (qutrits) span{|0⟩ , |1⟩ , |2⟩} and encode a qutrit as follows:

˜|i⟩ = (U12 ⊗ 13)

(
|i⟩ ⊗ 1√

3
(|00⟩+ |11⟩+ |22⟩)

)
(3)

˜|0⟩ = 1√
3
(|000⟩+ |111⟩+ |222⟩) ˜|1⟩ = 1√

3
(|012⟩+ |120⟩+ |201⟩)

˜|2⟩ = 1√
3
(|021⟩+ |102⟩+ |021⟩)

(4)

Error correction condition(Knill-Laflamme conditon)

⟨̃i|X†
aYb

˜|j⟩ ∝ δij , X, Y : Any operator acting on one qutrit. (5)

Operator reconstruction
∀Õ acting on ˜|i⟩, we can define O12 acting on 1st and 2nd qutrits by O12 := U12O1U

†
12

where ⟨̃i|Õ ˜|j⟩ = 1 ⟨i|O1|j⟩1. Then, for ˜|ψ⟩ ∈ span{ ˜|0⟩, ˜|1⟩, ˜|2⟩},

Õ ˜|ψ⟩ = O12
˜|ψ⟩ (O12 ↔ ϕAB). (6)

⇒ ϕ = ϕAB = ϕBC = ϕAC does not hold.
⇒Solve the paradox.
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Role of renormalization group in AdS/CFT

Poincaré coordinate in AdS spacetime:

ds2 =
dz2 − dx0

2 +
∑d

i=1 dxi
2

z2
. (7)

It is known that the z coordinate corresponds
to energy scale for renormalization group.

UV IR

Figure: Poincaré coordinate

⇒From these backgrounds, we study a relationship between renormaliation group and quantum error
correction.(c.f.[Furuya et al., 2022])
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2.Renormalization group for wave functionals
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Free scalar field theory
In this talk, we consider scalar field theory and all quantities are dimensionless.

In the free case, the Hamiltonian is given as follows:

H
(0)
Λ =

∫
p

K(p2)

[
−1

2

δ

δφ(p)

δ

δφ(−p)
+

1

2
ω2
Λ,pK

−2(p2)φ(p)φ(−p)
]

(8)

where ωΛ,p =
√
p2 +m2/Λ2, Λ is an effective energy scale and K is a cut-off function.

The ground state wave functional is given by

Ψ
(0)
Λ [φ] = NΛ exp

[
−1

2

∫
p

φ(p)
ωΛ,p

Kp
φ(−p)

]
. (9)

Define the creation and annihilation operators as follows:

a
(0)
Λ (p) =

1√
2

(√
ωΛ,p

Kp
φ(p) +

√
Kp

ωΛ,p

δ

δφ(−p)

)
, a

(0)†
Λ (p) =

1√
2

(√
ωΛ,p

Kp
φ(−p)−

√
Kp

ωΛ,p

δ

δφ(p)

)
.

(10)

1

p

K
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Unitary operator for renormalization group

Represent the renormalization group flow of a ground state in scalar field theory by a unitary
operator U(Λ,ΛUV) as follows:

|Ψ⟩Λ = U(Λ,ΛUV) |Ψ⟩
UV
, (11)

where ΛUV denotes UV cut-off.

The flow of creation/annihilation operators can be expressed using U(Λ,ΛUV) as follows:

aΛ(p) = U(Λ,ΛUV)aUV(p)U
†(Λ,ΛUV), (12)

a†Λ(p) = U(Λ,ΛUV)a
†
UV(p)U

†(Λ,ΛUV). (13)
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Concrete form of U and scaling of a and a† in free case

The concrete form of U(Λ,ΛUV) is given as follows:

U(Λ,ΛUV) = exp

[∫ ΛUV

Λ

dΛ′

Λ

{
−1

4

∫
p

−Λ∂ΛωΛ,p

ωΛ,p

(
a†Λ(−p)a

†
Λ(p)− aΛ(p)aΛ(−p)

)}]
. (14)

Define the following operators:

a
(0)
+,Λ(p) := a

(0)
Λ (p) + a

(0)†
Λ (−p), (15)

a
(0)
−,Λ(p) := a

(0)
Λ (p)− a

(0)†
Λ (−p). (16)

The scaling of a
(0)
±,Λ(p) is obtained as

a
(0)
+,Λ(p) =

√
ωΛ,p

ωUV,p
a
(0)
+,UV(p), a

(0)
−,Λ(p) =

√
ωUV,p

ωΛ,p
a
(0)
−,UV(p). (17)
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3.Encoding procedure
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Constructing q-level states by coherent states (c.f.[Furuya et al., 2022])

Consider coherent states

|f⟩Λ = exp

[∫
p

(
f(p)a†Λ(−p)− f†(−p)aΛ(p)

)]
|Ψ⟩Λ . (18)

Choose f = rf0 where r = 0, · · · , q − 1 and f0 is a real function such that
∫
p
|f0|2 is large.

⇒ Construct q-level states as follows:

|rf0⟩Λ = exp

[
−r
∫
p

f0(−p)
(
aΛ(p)− a†Λ(−p)

)]
|Ψ⟩Λ (19)

= exp

[
−r
∫
p

f0(−p)a−,Λ(p)

]
|Ψ⟩Λ . (20)

These states approximately satisfy orthonormal condition:

Λ⟨r
′f0|rf0⟩Λ = exp

[
−1

2
(r − r′)2

∫
p

|f0(p)|2
]
∼ δrr′ . (21)

⇒These states can be regarded as orthonormal basis.
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Encoding procedure

Encode the q-level states as follows:

|rf0⟩UV = U †(Λ,ΛUV) |rf0⟩Λ , (22)

where U†(Λ,ΛUV) is the Hermitian conjugate of the RG unitary operator.
⇒We represent the information at low energy scale in terms of d.o.f at high energy scale.

12 / 20



4.Quantum error correction
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Error correction condition

Consider an error operator DΛ[g] defined at low energy Λ as follows:

DΛ[g] = exp

[∫
p

g(−p)
(
aΛ(p)− a†Λ(−p)

)]
= exp

[∫
p

g(−p)a−,Λ(p)

]
, (23)

where g is an arbitrary real function.

Error correction condition (Knill-Laflamme condition) can be written as follows:

UV
⟨r′f0|D†

Λ[g]DΛ[h] |rf0⟩UV ∼ α[g, h]δrr′ , (24)

where α[g, h] is an Hermitian matrix on functional vector space.
⇒ we will show that this condition is approximately satisfied in IR limit.

To show this, it suffices to calculate

UV
⟨r′f0|DΛ[g] |rf0⟩UV , (25)

for any real functions g because D†
Λ[g]DΛ[h] = DΛ[g − h].
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Free case

Calculating
UV
⟨r′f0|DΛ[g] |rf0⟩UV we obtain

UV
⟨r′f0|DΛ[g] |rf0⟩UV = exp

[
−1

2

∫
p

(
(r − r′)2|f0(p)|2 − 2(r − r′)

√
ωUV,p

ωΛ,p
g(−p)f0(p) +

ωUV,p

ωΛ,p
|g(p)|2

)]
(26)

Taking IR limit(Λ ≪ m), we obtain ωΛ,p ≫ ωUV,p so that the second and third terms in the
exponent vanish.
⇒ when

∫
p
|f0(p)|2 is large enough, we obtain

UV
⟨r′f0|DΛ[g] |rf0⟩UV ∼ δrr′ , (27)

in IR limit.
⇒Error correction condition is satisfied.
⇒The states |rf0⟩UV encoded by U† are correctable from DΛ[g].
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Interacting case 1

Consider φ4 interaction up to the first-order perturbation.

The Hamiltonian is given by

HΛ = H
(0)
Λ + αHint,Λ, (28)

Hint,Λ =
δm2

Λ

2

∫
p

φ(p)φ(−p) + λΛ
4!

∫
p1p2p3p4

φ(p1)φ(p2)φ(p3)φ(p4)δ̃

(∑
i

pi

)
. (29)

α is an expansion parameter.

Expand the ground state, creation and annihilation operators in α as follows:

|Ψ⟩Λ = |Ψ(0)⟩Λ + α |Ψ(1)⟩Λ + · · · , (30)

aΛ(p) = a
(0)
Λ (p) + αa

(1)
Λ (p) + · · · , a†Λ(p) = a

(0)†
Λ (p) + αa

(1)†
Λ (p) + · · · , (31)
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Interacting case 2

We define U(Λ,ΛUV) as the renormalization group flow of the ground state.

Encoding is performed as follows:

|rf0⟩UV = U †(Λ,ΛUV) |rf0⟩Λ . (32)

We consider an error operator as follows:

DΛ[g] = exp

[∫
p

g(−p)a−,Λ(p)

]
= exp

[∫
p

g(−p)(a(0)−,Λ(p) + αa
(1)
−,Λ(p))

]
. (33)

We find that the error correction condition is satisfied in IR limit up to the first-order perturbation.

UV
⟨r′f0|DΛ[g] |rf0⟩UV ∼ δrr′ . (34)

⇒The states are correctable from DΛ[g], even if there is a interaction up to the first-order
perturbation.
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3.Conclusion
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Conclusion

Conclusion

The q-level states are constructed by coherent states.
The encoding procedure is done by the inverse of the renormalization group unitary operator U .
In the free case, the states are correctable from the error defined on IR.
In the interacting case, up to the first-order perturbation of φ4 interaction,
the states are also correctable.

UV
⟨r′f0|D†[g]D[h] |rf0⟩UV ∼ δrr′

Future work

Extend this study to the non-perturbative theory.
Relate this study to the bulk reconstruction.
As we have seen, the encoding procedure is done by U†.
⇒ It should be important to consider the inverse renormalization group.

(c.f. [Berman et al., 2023, Cotler and Rezchikov, 2023])
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Details of derivation of scaling in perturbation theory 1

Deriving the ground state up to first order perturbation of φ4 interacting theory, we obtain

|Ψ⟩Λ = |Ψ(0)⟩Λ + α |Ψ(1)⟩Λ , (35)

where

|Ψ(1)⟩Λ = AΛ |Ψ(0)⟩Λ (36)

=

[
− λ

4!

∫
k1···k4

δ̃(
∑4

i=1 ki)

ωΛ,1 + ωΛ,2 + ωΛ,3 + ωΛ,4

4∏
i=1

√
Ki

2ωΛ,i
a
(0)†
Λ (ki)

−
(
δm2

Λ

2
+
λ

4!

∫
p̄

6Kp

2ωp

)∫
k

Kk

4ω2
Λ,k

a
(0)†
Λ (k)a

(0)†
Λ (−k)

]
|Ψ(0)⟩ .

(37)
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Details of derivation of scaling in perturbation theory 2

We define U(Λ,ΛUV), as the renormalization group flow of the ground state:

|Ψ⟩Λ = U(Λ,ΛUV) |Ψ⟩
UV
, (38)

We assume that U(Λ,ΛUV) can be written as

U(Λ,ΛUV) = T exp

[∫ ΛUV

Λ

dΛ′

Λ′ XΛ′

]
. (39)

If we have known how the ground state flows by the analysing the renormalization group, we can
calculate XΛ from

−Λ∂Λ |Ψ⟩Λ = XΛ |Ψ⟩Λ . (40)
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Details of derivation of scaling in perturbation theory 2

We can determine XΛ perturbatively. Expanding the scaling equation for the ground state, we obtain

−Λ∂Λ |Ψ(0)
0 ⟩Λ = X

(0)
Λ |Ψ(0)

0 ⟩Λ , (41)

−Λ∂Λ |Ψ(1)
0 ⟩Λ = X

(0)
Λ |Ψ(1)

0 ⟩Λ +X
(1)
Λ |Ψ(0)

0 ⟩Λ . (42)

From them, we obtain

−Λ∂ΛAΛ = X
(1)
Λ + [X

(0)
Λ , AΛ]. (43)
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Details of derivation of scaling in perturbation theory 3

We also expand the scaling equation for annihilation operators and obtain

−Λ∂Λa
(0)
Λ (p) =

[
X

(0)
Λ , a

(0)
Λ (p)

]
(44)

−Λ∂Λa
(1)
Λ (p) =

[
X

(1)
Λ , a

(0)
Λ (p)

]
+
[
X

(0)
Λ , a

(1)
Λ (p)

]
(45)

Same equations hold for a†.
Solving (45) by using (43), we see that the solution is

a
(1)
Λ (p) = −[a

(0)
Λ (p), AΛ]. (46)
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Details of error correction in perturbation theory1

The error can be expressed as

D[g] = exp

[∫
p

g(−p)a−,Λ(p)

]
= exp

[∫
p

g(−p)
(
a
(0)
−,Λ(p) + αa

(1)
−,Λ(−p)

)]
. (47)

And the quantity we evaluate is

UV
⟨r′f0|D[g] |rf0⟩UV (48)

We calculate this perturbative.
First,

a−,Λ(p) = a
(0)
−,Λ(p) + αa

(1)
−,Λ

(
p; a

(0)
+,Λ, a

(0)
−,Λ

)
(49)

=

√
ωUV,p

ωΛ,p
a
(0)
+,UV(p) + αa

(1)
−,Λ

(
p;

√
ωΛ

ωUV

a
(0)
+,UV,

√
ωUV

ωΛ
a
(0)
+,UV

)
. (50)

This notation means that a
(1)
−,Λ contains a

(0)
±,0.
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Details of error correction in perturbation theory2

For the first term we use a
(0)
+,UV = a+,UV − αa

(1)
+,UV and for the α term, we can replace a(0) to a if we

consider up to first order of perturbation.
Then,

a−,Λ(p) =

√
ωUV,p

ωΛ,p
a+,UV(p) + α

{
a
(1)
−,Λ

(
p;

√
ωΛ

ωUV

a+,UV,

√
ωUV

ωΛ
a+,UV

)
−
√
ωUV,p

ωΛ,p
a
(1)
+,UV(p; a+,UV, a+,UV)

}
.

(51)

Using the fact that coherent state is a eigenstate for annihilation operator:

aΛ(p) |rf0⟩Λ = rf0(p) |rf0⟩Λ (52)

we can calculate error correction condition.
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