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1.Backgrounds
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Bulk operator reconstruction in AdS/CFT
@ Bulk operators in the causal wedge
corresponding to a boundary sub-region can be
reconstructed from the CFT operator on the
sub-region. A B

b(x) = / WYE@Y)OY) (1)

@ Denote the bulk operator ¢ reconstructed by
sub-region AU B by ¢ 4p and the boundary

operator on the sub-region C by O¢. C

From the locality of field theory,
Figure: Bulk operator reconstruction.

[6aB,Oc] = [pac, O] = [6Bc,Oa] =0.  (2) From[Harlow, 2017]
(Radial commutativity)

@ Suppose ¢ = pap = ¢c = ¢ac. By Schur's lemma, ¢ o I.
=This is paradox.
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AdS/CFT and quantum error correction

3qutrit code
Combine three 3-level systems (qutrits) span{|0),|1),|2)} and encode a qutrit as follows:

i) = (U2 © 13) (Ii> ® %(|00> + 1) + |22>)) (3)

0) = 7(\ooo>+|111>+|222>) 1) =

|2) = ﬁ(\ozw +[102) + [021))

(|012> +[120) + [201))

%\

(4)

Error correction condition(Knill-Laflamme conditon)
(i|X]V3|7) o dij,  X,Y : Any operator acting on one qutrit.

Operator reconstruction

YO acting on |i), we can define Oq2 acting on 1st and 2nd qutrits by O = UlgOlUf2
where (i|O]j) = ; (i|O1]j),. Then, for [¢)) € span{|0), |1),[2)},

OlY) = O1a[t))  (O12 > dan). (6)

= ¢ =¢ap = ¢pc = pac does not hold.
=-Solve the paradox.

(5)
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Role of renormalization group in AdS/CFT

@ Poincaré coordinate in AdS spacetime:

2 _ dz? — dxy?® + fo:l da;?

ds 3 . (N

z

@ It is known that the z coordinate corresponds
to energy scale for renormalization group.

Figure: Poincaré coordinate

=-From these backgrounds, we study a relationship between renormaliation group and quantum error
correction.(c.f.[Furuya et al., 2022])
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2.Renormalization group for wave functionals
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Free scalar field theory I
@ In this talk, we consider scalar field theory and all quantities are dimensionless.
@ In the free case, the Hamiltonian is given as follows: »
T 1
0) _ / 2 [1 4 d 1 2 —2/. 2 .
Hy” = [ K(p — 4 —wi K 2(p*)p(p)o(—p 8

where wp , = v/p? + m2/A2, A is an effective energy scale and K is a cut-off function.
@ The ground state wave functional is given by

W0l = Nyesn |5 [ et 52etn) ©

@ Define the creation and annihilation operators as follows:

O Dap, K, ¢ 0t L [ [wap K, ¢
a 5 a = —_— _ p— J— - .
( WAp 5@(—17)) AN Ky o) wa,p 0¢(p)




Unitary operator for renormalization group

@ Represent the renormalization group flow of a ground state in scalar field theory by a unitary
operator U (A, Ayy) as follows:

(W)a = U Aw) W),y (11)

where Ay, denotes UV cut-off.
@ The flow of creation/annihilation operators can be expressed using U(A, Ayy) as follows:

U(A7Auv)auv(p)UT(A7Auv), (12)
U(A, Ay)al, (p)UT (A, Ayy). (13)

S 8
s
— —
==
([

8/20



Concrete form of U and scaling of a and a in free case

@ The concrete form of U(A, Ayy) is given as follows:

U(A,Ay) = exp ox
P

A

@ Define the following operators:
0 0 0

a{"s(p) =l (p) + ai"" (=),

a\(p) = a{(p) — o' ().

@ The scaling of agg)A(p) is obtained as

0 [WAp (0 0 [Wuwv,p (0
afi-,)A(p) “\w . agr,)uv(p)v a'(—,)A(p) = wuvip 0(77)Uv(p)-
uv,p A,p

/Auv d[!\\' {_i /p R C) (aj\(—p)aj\(p) - aA(p)aA(_p)) }] )
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3.Encoding procedure
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Constructing g-level states by coherent states (c.f [Furuya et al., 2022))

@ Consider coherent states

ha=exp | [ (k-0 = 11 -paain) | o0, (18)
@ Choose f =rfy where r =0,--- ,q— 1 and fy is a real function such that fp \f0|2 is large.
= Construct g-level states as follows:
sl =exp |1 [ fo-p) (aa(0) ~ k() 0, (19)
— e |1 [ f-pa_a)] 19, (20)
P

@ These states approximately satisfy orthonormal condition:

A falr o) = e =5 = [ 1G] ~ ey

=-These states can be regarded as orthonormal basis.
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Encoding procedure

@ Encode the g-level states as follows:
7 fo)ow = UT(A Aw) [7fo) o - (22)

where UT(A, Ay,) is the Hermitian conjugate of the RG unitary operator.
=-We represent the information at low energy scale in terms of d.o.f at high energy scale.

12/20



4 .Quantum error correction
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Error correction condition
o Consider an error operator Dy [g] defined at low energy A as follows:

Dilg] = exp Ug(—p) (aA(p) - af\(—p))} = exp Mg(—p)a—,A(p)],

P

where g is an arbitrary real function.

@ Error correction condition (Knill-Laflamme condition) can be written as follows:

o (" fol DXgIDAR] 7 fo) gy ~ lg, h]6rr,

where a[g, h] is an Hermitian matrix on functional vector space.
= we will show that this condition is approximately satisfied in IR limit.

@ To show this, it suffices to calculate

Uv<r/f0| DA[g} |Tf0>uv7

for any real functions g because Dj\ [g]Da[h] = Dalg — hl.

(23)

(24)
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Free case

o Calculating (r' fo| Dalg] |7 fo),, we obtain

ol oDl ) = ex0| =5 [ (= P =2 =), (220 ) + 2221000 |

P
(26)
e Taking IR limit(A <« m), we obtain wy p, > wyy,p so that the second and third terms in the
exponent vanish.
= when [ | fo(p)|? is large enough, we obtain
o A7 fol Dalgl I fo)yy ~ Grrrs (27)

in IR limit.
=-Error correction condition is satisfied.
=The states |rf;),, encoded by UT are correctable from D, [g].

15/20



Interacting case 1

e Consider o* interaction up to the first-order perturbation.

@ The Hamiltonian is given by

Hy = H/(\O) + aHing A, (28)

Hipep = 57;/‘ /s@(p)w(—p) + %/ @(m)@(m)@(m)@(m)g<Zpi>. (29)

« is an expansion parameter.

@ Expand the ground state, creation and annihilation operators in « as follows:

W), = |‘I’(O)>A +a ‘\I,(l)>A 4 (30)

an(p) = a’(p) + aal’(p) + -+, ak(p) = a'p) + aaVT(p) + -, (31)
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Interacting case 2

o We define U(A, Ayy) as the renormalization group flow of the ground state.
@ Encoding is performed as follows:

7 fo)o = UT(A, Aw)[rfo)y - (32)

@ We consider an error operator as follows:

Dalg] = exp { / g(p)a_,A<p>] — exp [ [opahw + o)) (@

p p

@ We find that the error correction condition is satisfied in IR limit up to the first-order perturbation.

UV<T/f0| DA[g] ‘Tf0>uv ~ Oy (34)

=The states are correctable from Dy [g], even if there is a interaction up to the first-order
perturbation.
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3.Conclusion
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Conclusion

Conclusion

@ The g-level states are constructed by coherent states.

@ The encoding procedure is done by the inverse of the renormalization group unitary operator U.
@ In the free case, the states are correctable from the error defined on IR.

@ In the interacting case, up to the first-order perturbation of ¢* interaction,
the states are also correctable.

o fol DT [g] D[R] [rfo) y, ~ b

Future work

@ Extend this study to the non-perturbative theory.
@ Relate this study to the bulk reconstruction.
@ As we have seen, the encoding procedure is done by Ut.
= It should be important to consider the inverse renormalization group.
(c.f. [Berman et al., 2023, Cotler and Rezchikov, 2023])
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Details of derivation of scaling in perturbation theory 1

Deriving the ground state up to first order perturbation of ¢* interacting theory, we obtain
W)y = ‘\II(O)>A ta |‘I’(1)>A
where

|‘I’(1)>A = Ay |\1;(0)>A
2l 4
_é/ 0 i H (0)1 (k)
4 Sy, k4WA1+WA2+UJA3+wA4Z 1 2wAZ A

om32 )\ [ 6K K
—( SR / ) 5y (k)al (k)

7 2wp k 4wA7k

v©).

(35)

(36)

(37)
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Details of derivation of scaling in perturbation theory 2

We define U(A, Ay ), as the renormalization group flow of the ground state:
(W) = UA Aw) [9),, 5 (38)

We assume that U(A, Ay ) can be written as

U(A,Ay) = Texp (39)

If we have known how the ground state flows by the analysing the renormalization group, we can
calculate X, from

—ADp W), = X [T, . (40)
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Details of derivation of scaling in perturbation theory 2

We can determine X, perturbatively. Expanding the scaling equation for the ground state, we obtain

0 0 0
—A0y [0y, = X0 (), (41)
A By, = X Oy, 4+ x (el (42)

From them, we obtain

—AoaAp =X 4 XV, 4] (43)
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Details of derivation of scaling in perturbation theory 3

We also expand the scaling equation for annihilation operators and obtain

~A0al(p) = [ X1, )] (44)
—A@Aas\l)(p) = {XI(\l),aE\O)(p)} + [X/(\O),ag\l)(p)} (45)

Same equations hold for .
Solving (45) by using (43), we see that the solution is

a (p) = —[a’ (p), An]. (46)
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Details of error correction in perturbation theoryl

The error can be expressed as

Dlg] = exp [ / g(—p)a,A(p)} = exp { / 9(—p) (a(f,)A(p) + aa(l’)A(—p))} (47)
P p
And the quantity we evaluate is
uv<71/f0‘ D[g] |Tf0>uv (48)
We calculate this perturbative.
First,
a- () = a @) + aaly (pray, 0 ) (49)

W w w
= [0l )+ ac® (p,,/ L0, [ S”w). (50)

This notation means that a(_l)A contains a(i()?o.
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Details of error correction in perturbation theory?2

For the first term we use af,)w = a4, — aagrl’)w and for the o term, we can replace a(©) to a if we
consider up to first order of perturbation.

Then,
w [w / [@w
a—a(p) = wj:/’p ayw(p) + { W (p, —a+ uvs a+ uv> - 2 pa’g-l)uv(pv At uvs At UV)}
sP Ap
(51)
Using the fact that coherent state is a eigenstate for annihilation operator:
an(p) Irfo)n = rfo(p) |7 fo)a (52)

we can calculate error correction condition.
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