Renormalization group and quantum error correction

Ryota Nasu¹ Collaborators:Takaaki Kuwahara¹,Gota Tanaka²,Asato Tsuchiya¹

¹Shizuoka Univ. ²Doshisha Univ.

arXiv: 2312.XXXXX

KEK Theory Workshop 2023 29 November - 1 December 2023

1.Backgrounds

Bulk operator reconstruction in $\mathsf{AdS}/\mathsf{CFT}$

 Bulk operators in the causal wedge corresponding to a boundary sub-region can be reconstructed from the CFT operator on the sub-region.

$$\phi(x) = \int dY K(x;Y) \mathcal{O}(Y)$$
 (1)

 Denote the bulk operator φ reconstructed by sub-region A ∪ B by φ_{AB} and the boundary operator on the sub-region C by O_C.
 From the locality of field theory,

$$[\phi_{AB}, \mathcal{O}_C] = [\phi_{AC}, \mathcal{O}_B] = [\phi_{BC}, \mathcal{O}_A] = 0.$$
 (2)

(Radial commutativity)

• Suppose
$$\phi = \phi_{AB} = \phi_{BC} = \phi_{AC}$$
. By Schur's lemma, $\phi \propto I$.
 \Rightarrow This is paradox.

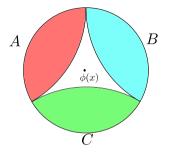


Figure: Bulk operator reconstruction. From[Harlow, 2017]

AdS/CFT and quantum error correction

3qutrit code

Combine three 3-level systems (qutrits) $\mathrm{span}\{\ket{0},\ket{1},\ket{2}\}$ and encode a qutrit as follows:

$$|\tilde{i}\rangle = (U_{12} \otimes 1_3) \left(|i\rangle \otimes \frac{1}{\sqrt{3}} (|00\rangle + |11\rangle + |22\rangle) \right)$$

$$|\tilde{0}\rangle = \frac{1}{\sqrt{3}} (|000\rangle + |111\rangle + |222\rangle) \quad |\tilde{1}\rangle = \frac{1}{\sqrt{3}} (|012\rangle + |120\rangle + |201\rangle)$$

$$(4)$$

$$|\tilde{2}\rangle = \frac{1}{\sqrt{3}}(|021\rangle + |102\rangle + |021\rangle)$$

Error correction condition(Knill-Laflamme conditon)

 $\langle ilde{i}|X_a^\dagger Y_b| ilde{j}
angle \propto \delta_{ij}, \quad X,Y:$ Any operator acting on one qutrit.

Operator reconstruction

 ${}^{\forall} \tilde{O} \text{ acting on } |\tilde{i}\rangle \text{, we can define } O_{12} \text{ acting on 1st and 2nd qutrits by } O_{12} \coloneqq U_{12}O_1U_{12}^{\dagger} \text{ where } \langle \tilde{i}|\tilde{O}|\tilde{j}\rangle = {}_1 \langle i|O_1|j\rangle_1. \text{ Then, for } |\tilde{\psi}\rangle \in \text{span}\{|\tilde{0}\rangle, |\tilde{1}\rangle, |\tilde{2}\rangle\},$

$$\tilde{O}|\tilde{\psi}\rangle = O_{12}|\tilde{\psi}\rangle \quad (O_{12} \leftrightarrow \phi_{AB}).$$
(6)

 $\Rightarrow \phi = \phi_{AB} = \phi_{BC} = \phi_{AC} \text{ does not hold.}$ $\Rightarrow \text{Solve the paradox.}$ (5)

Role of renormalization group in AdS/CFT

• Poincaré coordinate in AdS spacetime:

$$ds^{2} = \frac{dz^{2} - dx_{0}^{2} + \sum_{i=1}^{d} dx_{i}^{2}}{z^{2}}.$$
 (7)

• It is known that the *z* coordinate corresponds to energy scale for renormalization group.

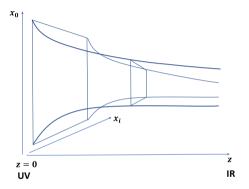


Figure: Poincaré coordinate

 \Rightarrow From these backgrounds, we study a relationship between renormaliation group and quantum error correction.(c.f.[Furuya et al., 2022])

2. Renormalization group for wave functionals

Free scalar field theory

- In this talk, we consider scalar field theory and all quantities are dimensionless.
- In the free case, the Hamiltonian is given as follows:

$$H_{\Lambda}^{(0)} = \int_{p} K(p^{2}) \left[-\frac{1}{2} \frac{\delta}{\delta\varphi(p)} \frac{\delta}{\delta\varphi(-p)} + \frac{1}{2} \omega_{\Lambda,p}^{2} K^{-2}(p^{2})\varphi(p)\varphi(-p) \right]$$
(8)

where $\omega_{\Lambda,p} = \sqrt{p^2 + m^2/\Lambda^2}$, Λ is an effective energy scale and K is a cut-off function.

• The ground state wave functional is given by

$$\Psi_{\Lambda}^{(0)}[\varphi] = \mathcal{N}_{\Lambda} \exp\left[-\frac{1}{2} \int_{p} \varphi(p) \frac{\omega_{\Lambda,p}}{K_{p}} \varphi(-p)\right].$$
(9)

• Define the creation and annihilation operators as follows:

$$a_{\Lambda}^{(0)}(p) = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{\omega_{\Lambda,p}}{K_p}} \varphi(p) + \sqrt{\frac{K_p}{\omega_{\Lambda,p}}} \frac{\delta}{\delta\varphi(-p)} \right), \quad a_{\Lambda}^{(0)\dagger}(p) = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{\omega_{\Lambda,p}}{K_p}} \varphi(-p) - \sqrt{\frac{K_p}{\omega_{\Lambda,p}}} \frac{\delta}{\delta\varphi(p)} \right)$$
(10)

1

Unitary operator for renormalization group

• Represent the renormalization group flow of a ground state in scalar field theory by a unitary operator $U(\Lambda, \Lambda_{\text{uv}})$ as follows:

$$\left|\Psi\right\rangle_{\Lambda} = U(\Lambda, \Lambda_{\mathsf{UV}}) \left|\Psi\right\rangle_{\mathsf{UV}},\tag{11}$$

where Λ_{UV} denotes UV cut-off.

• The flow of creation/annihilation operators can be expressed using $U(\Lambda, \Lambda_{UV})$ as follows:

$$a_{\Lambda}(p) = U(\Lambda, \Lambda_{\rm UV}) a_{\rm UV}(p) U^{\dagger}(\Lambda, \Lambda_{\rm UV}), \qquad (12)$$

$$a^{\dagger}_{\Lambda}(p) = U(\Lambda, \Lambda_{\rm UV}) a^{\dagger}_{\rm UV}(p) U^{\dagger}(\Lambda, \Lambda_{\rm UV}).$$
(13)

Concrete form of U and scaling of a and a^{\dagger} in free case

• The concrete form of $U(\Lambda, \Lambda_{\text{UV}})$ is given as follows:

$$U(\Lambda, \Lambda_{\rm uv}) = \exp\left[\int_{\Lambda}^{\Lambda_{\rm uv}} \frac{d\Lambda'}{\Lambda} \left\{ -\frac{1}{4} \int_{p} \frac{-\Lambda \partial_{\Lambda} \omega_{\Lambda, p}}{\omega_{\Lambda, p}} \left(a_{\Lambda}^{\dagger}(-p) a_{\Lambda}^{\dagger}(p) - a_{\Lambda}(p) a_{\Lambda}(-p) \right) \right\} \right].$$
(14)

• Define the following operators:

$$a_{+,\Lambda}^{(0)}(p) \coloneqq a_{\Lambda}^{(0)}(p) + a_{\Lambda}^{(0)\dagger}(-p),$$
(15)

$$a_{-,\Lambda}^{(0)}(p) \coloneqq a_{\Lambda}^{(0)}(p) - a_{\Lambda}^{(0)\dagger}(-p).$$
(16)

• The scaling of $a^{(0)}_{\pm,\Lambda}(p)$ is obtained as

$$a_{+,\Lambda}^{(0)}(p) = \sqrt{\frac{\omega_{\Lambda,p}}{\omega_{\text{UV},p}}} a_{+,\text{UV}}^{(0)}(p), \qquad a_{-,\Lambda}^{(0)}(p) = \sqrt{\frac{\omega_{\text{UV},p}}{\omega_{\Lambda,p}}} a_{-,\text{UV}}^{(0)}(p).$$
(17)

3. Encoding procedure

Constructing q-level states by coherent states (c.f.[Furuya et al., 2022])

• Consider coherent states

$$|f\rangle_{\Lambda} = \exp\left[\int_{p} \left(f(p)a^{\dagger}_{\Lambda}(-p) - f^{\dagger}(-p)a_{\Lambda}(p)\right)\right] |\Psi\rangle_{\Lambda}.$$
(18)

• Choose $f = rf_0$ where $r = 0, \dots, q-1$ and f_0 is a real function such that $\int_p |f_0|^2$ is large. \Rightarrow Construct q-level states as follows:

$$|rf_{0}\rangle_{\Lambda} = \exp\left[-r\int_{p}f_{0}(-p)\left(a_{\Lambda}(p) - a_{\Lambda}^{\dagger}(-p)\right)\right]|\Psi\rangle_{\Lambda}$$

$$= \exp\left[-r\int_{p}f_{0}(-p)a_{-,\Lambda}(p)\right]|\Psi\rangle_{\Lambda}.$$
(19)
(20)

• These states approximately satisfy orthonormal condition:

$$_{\Lambda}\langle r'f_{0}|rf_{0}\rangle_{\Lambda} = \exp\left[-\frac{1}{2}(r-r')^{2}\int_{p}|f_{0}(p)|^{2}\right] \sim \delta_{rr'}.$$
 (21)

 \Rightarrow These states can be regarded as orthonormal basis.

• Encode the q-level states as follows:

$$\left|rf_{0}\right\rangle_{\rm uv} = U^{\dagger}(\Lambda, \Lambda_{\rm uv}) \left|rf_{0}\right\rangle_{\Lambda},\tag{22}$$

where $U^{\dagger}(\Lambda, \Lambda_{\text{uv}})$ is the Hermitian conjugate of the RG unitary operator. \Rightarrow We represent the information at low energy scale in terms of d.o.f at high energy scale.

4. Quantum error correction

Error correction condition

• Consider an error operator $D_{\Lambda}[g]$ defined at low energy Λ as follows:

$$D_{\Lambda}[g] = \exp\left[\int_{p} g(-p) \left(a_{\Lambda}(p) - a_{\Lambda}^{\dagger}(-p)\right)\right] = \exp\left[\int_{p} g(-p) a_{-,\Lambda}(p)\right],$$
(23)

where g is an arbitrary real function.

• Error correction condition (Knill-Laflamme condition) can be written as follows:

$$_{\rm UV} \langle r'f_0 | D^{\dagger}_{\Lambda}[g] D_{\Lambda}[h] | rf_0 \rangle_{\rm UV} \sim \alpha[g,h] \delta_{rr'}, \qquad (24)$$

where $\alpha[g, h]$ is an Hermitian matrix on functional vector space. \Rightarrow we will show that this condition is approximately satisfied in IR limit.

• To show this, it suffices to calculate

$$_{JV}\langle r'f_0 | D_{\Lambda}[g] | rf_0 \rangle_{UV} , \qquad (25)$$

for any real functions g because $D^{\dagger}_{\Lambda}[g]D_{\Lambda}[h] = D_{\Lambda}[g-h].$

Free case

 \bullet Calculating $_{\rm UV}\langle r'f_0|\,D_\Lambda[g]\,|rf_0\rangle_{\rm UV}$ we obtain

$$\sum_{JV} \langle r'f_0 | D_{\Lambda}[g] | rf_0 \rangle_{UV} = \exp\left[-\frac{1}{2} \int_p \left((r - r')^2 | f_0(p) |^2 - 2(r - r') \sqrt{\frac{\omega_{UV,p}}{\omega_{\Lambda,p}}} g(-p) f_0(p) + \frac{\omega_{UV,p}}{\omega_{\Lambda,p}} | g(p) |^2 \right) \right]$$
(26)

• Taking IR limit($\Lambda \ll m$), we obtain $\omega_{\Lambda,p} \gg \omega_{\text{uv},p}$ so that the second and third terms in the exponent vanish. \Rightarrow when $\int_p |f_0(p)|^2$ is large enough, we obtain

$$_{\rm UV} \langle r' f_0 | D_{\Lambda}[g] | r f_0 \rangle_{\rm UV} \sim \delta_{rr'}, \tag{27}$$

in IR limit.

 \Rightarrow Error correction condition is satisfied.

 \Rightarrow The states $|rf_0\rangle_{uv}$ encoded by U^{\dagger} are correctable from $D_{\Lambda}[g]$.

Interacting case 1

- $\bullet\,$ Consider φ^4 interaction up to the first-order perturbation.
- The Hamiltonian is given by

$$H_{\Lambda} = H_{\Lambda}^{(0)} + \alpha H_{\text{int},\Lambda},$$

$$H_{\text{int},\Lambda} = \frac{\delta m_{\Lambda}^2}{2} \int_p \varphi(p)\varphi(-p) + \frac{\lambda_{\Lambda}}{4!} \int_{p_1p_2p_3p_4} \varphi(p_1)\varphi(p_2)\varphi(p_3)\varphi(p_4)\tilde{\delta}\left(\sum_i p_i\right).$$
(28)
(29)

 α is an expansion parameter.

• Expand the ground state, creation and annihilation operators in α as follows:

$$|\Psi\rangle_{\Lambda} = |\Psi^{(0)}\rangle_{\Lambda} + \alpha |\Psi^{(1)}\rangle_{\Lambda} + \cdots, \qquad (30)$$

$$a_{\Lambda}(p) = a_{\Lambda}^{(0)}(p) + \alpha a_{\Lambda}^{(1)}(p) + \cdots, \quad a_{\Lambda}^{\dagger}(p) = a_{\Lambda}^{(0)\dagger}(p) + \alpha a_{\Lambda}^{(1)\dagger}(p) + \cdots,$$
(31)

Interacting case 2

- We define $U(\Lambda,\Lambda_{\rm \tiny UV})$ as the renormalization group flow of the ground state.
- Encoding is performed as follows:

$$\left|rf_{0}\right\rangle_{\mathrm{UV}} = U^{\dagger}(\Lambda, \Lambda_{\mathrm{UV}})\left|rf_{0}\right\rangle_{\Lambda}.$$
(32)

• We consider an error operator as follows:

$$D_{\Lambda}[g] = \exp\left[\int_{p} g(-p)a_{-,\Lambda}(p)\right] = \exp\left[\int_{p} g(-p)(a_{-,\Lambda}^{(0)}(p) + \alpha a_{-,\Lambda}^{(1)}(p))\right].$$
 (33)

• We find that the error correction condition is satisfied in IR limit up to the first-order perturbation.

$$_{\rm UV}\langle r'f_0 | D_{\Lambda}[g] | rf_0 \rangle_{\rm UV} \sim \delta_{rr'}.$$
(34)

 \Rightarrow The states are correctable from $D_{\Lambda}[g]$, even if there is a interaction up to the first-order perturbation.

3.Conclusion

Conclusion

Conclusion

- The q-level states are constructed by coherent states.
- The encoding procedure is done by the inverse of the renormalization group unitary operator U.
- In the free case, the states are correctable from the error defined on IR.
- In the interacting case, up to the first-order perturbation of φ^4 interaction, the states are also correctable.

 $\sum_{\mathbf{UV}} \langle r' f_0 | D^{\dagger}[g] D[h] | r f_0 \rangle_{\mathbf{UV}} \sim \delta_{rr'}$

Future work

- Extend this study to the non-perturbative theory.
- Relate this study to the bulk reconstruction.
- \bullet As we have seen, the encoding procedure is done by $U^{\dagger}.$
 - \Rightarrow It should be important to consider the inverse renormalization group.

(c.f. [Berman et al., 2023, Cotler and Rezchikov, 2023])

References I

Berman, D. S., Klinger, M. S., and Stapleton, A. G. (2023). Bayesian renormalization. *Mach. Learn. Sci. Tech.*, 4(4):045011.

Cotler, J. and Rezchikov, S. (2023). Renormalizing Diffusion Models.

> Furuya, K., Lashkari, N., and Moosa, M. (2022). Renormalization group and approximate error correction. *Phys. Rev. D*, 106(10):105007.

Harlow, D. (2017).

The Ryu–Takayanagi Formula from Quantum Error Correction. *Commun. Math. Phys.*, 354(3):865–912.

Backup Slides

Deriving the ground state up to first order perturbation of φ^4 interacting theory, we obtain

$$|\Psi\rangle_{\Lambda} = |\Psi^{(0)}\rangle_{\Lambda} + \alpha |\Psi^{(1)}\rangle_{\Lambda}, \qquad (35)$$

where

$$\begin{split} |\Psi^{(1)}\rangle_{\Lambda} &= A_{\Lambda} |\Psi^{(0)}\rangle_{\Lambda} \tag{36} \\ &= \left[-\frac{\lambda}{4!} \int_{k_{1}\cdots k_{4}} \frac{\tilde{\delta}(\sum_{i=1}^{4}k_{i})}{\omega_{\Lambda,1} + \omega_{\Lambda,2} + \omega_{\Lambda,3} + \omega_{\Lambda,4}} \prod_{i=1}^{4} \sqrt{\frac{K_{i}}{2\omega_{\Lambda,i}}} a_{\Lambda}^{(0)\dagger}(k_{i}) \\ &- \left(\frac{\delta m_{\Lambda}^{2}}{2} + \frac{\lambda}{4!} \int_{\bar{p}} \frac{6K_{p}}{2\omega_{p}} \right) \int_{k} \frac{K_{k}}{4\omega_{\Lambda,k}^{2}} a_{\Lambda}^{(0)\dagger}(k) a_{\Lambda}^{(0)\dagger}(-k) \right] |\Psi^{(0)}\rangle \,. \end{split}$$

We define $U(\Lambda, \Lambda_{\scriptscriptstyle \rm UV})$, as the renormalization group flow of the ground state:

$$\Psi\rangle_{\Lambda} = U(\Lambda, \Lambda_{\rm uv}) \left|\Psi\rangle_{\rm uv},$$
(38)

We assume that $U(\Lambda, \Lambda_{UV})$ can be written as

$$U(\Lambda, \Lambda_{\rm uv}) = T \exp\left[\int_{\Lambda}^{\Lambda_{\rm uv}} \frac{d\Lambda'}{\Lambda'} X_{\Lambda'}\right].$$
(39)

If we have known how the ground state flows by the analysing the renormalization group, we can calculate X_Λ from

$$-\Lambda \partial_{\Lambda} \left| \Psi \right\rangle_{\Lambda} = X_{\Lambda} \left| \Psi \right\rangle_{\Lambda}. \tag{40}$$

We can determine X_Λ perturbatively. Expanding the scaling equation for the ground state, we obtain

$$-\Lambda \partial_{\Lambda} |\Psi_{0}^{(0)}\rangle_{\Lambda} = X_{\Lambda}^{(0)} |\Psi_{0}^{(0)}\rangle_{\Lambda}, \qquad (41)$$

$$-\Lambda \partial_{\Lambda} |\Psi_{0}^{(1)}\rangle_{\Lambda} = X_{\Lambda}^{(0)} |\Psi_{0}^{(1)}\rangle_{\Lambda} + X_{\Lambda}^{(1)} |\Psi_{0}^{(0)}\rangle_{\Lambda} \,. \tag{42}$$

From them, we obtain

$$-\Lambda \partial_{\Lambda} A_{\Lambda} = X_{\Lambda}^{(1)} + [X_{\Lambda}^{(0)}, A_{\Lambda}].$$
(43)

We also expand the scaling equation for annihilation operators and obtain

$$-\Lambda \partial_{\Lambda} a_{\Lambda}^{(0)}(p) = \left[X_{\Lambda}^{(0)}, a_{\Lambda}^{(0)}(p) \right]$$
(44)
$$-\Lambda \partial_{\Lambda} a_{\Lambda}^{(1)}(p) = \left[X_{\Lambda}^{(1)}, a_{\Lambda}^{(0)}(p) \right] + \left[X_{\Lambda}^{(0)}, a_{\Lambda}^{(1)}(p) \right]$$
(45)

Same equations hold for a^{\dagger} .

Solving (45) by using (43), we see that the solution is

$$a_{\Lambda}^{(1)}(p) = -[a_{\Lambda}^{(0)}(p), A_{\Lambda}].$$
(46)

Details of error correction in perturbation theory1

The error can be expressed as

$$D[g] = \exp\left[\int_{p} g(-p)a_{-,\Lambda}(p)\right] = \exp\left[\int_{p} g(-p)\left(a_{-,\Lambda}^{(0)}(p) + \alpha a_{-,\Lambda}^{(1)}(-p)\right)\right].$$
(47)

And the quantity we evaluate is

$$_{\rm UV}\langle r'f_0|\,D[g]\,|rf_0\rangle_{\rm UV} \tag{48}$$

We calculate this perturbative. First,

$$a_{-,\Lambda}(p) = a_{-,\Lambda}^{(0)}(p) + \alpha a_{-,\Lambda}^{(1)}\left(p; a_{+,\Lambda}^{(0)}, a_{-,\Lambda}^{(0)}\right)$$
(49)

$$=\sqrt{\frac{\omega_{\mathsf{UV},p}}{\omega_{\Lambda,p}}}a_{+,\mathsf{UV}}^{(0)}(p) + \alpha a_{-,\Lambda}^{(1)}\left(p;\sqrt{\frac{\omega_{\Lambda}}{\omega_{\mathsf{UV}}}}a_{+,\mathsf{UV}}^{(0)},\sqrt{\frac{\omega_{\mathsf{UV}}}{\omega_{\Lambda}}}a_{+,\mathsf{UV}}^{(0)}\right).$$
(50)

This notation means that $a^{(1)}_{-,\Lambda}$ contains $a^{(0)}_{\pm,0}$.

Details of error correction in perturbation theory2

For the first term we use $a_{+,\text{uv}}^{(0)} = a_{+,\text{uv}} - \alpha a_{+,\text{uv}}^{(1)}$ and for the α term, we can replace $a^{(0)}$ to a if we consider up to first order of perturbation. Then,

$$a_{-,\Lambda}(p) = \sqrt{\frac{\omega_{\mathsf{UV},p}}{\omega_{\Lambda,p}}} a_{+,\mathsf{UV}}(p) + \alpha \bigg\{ a_{-,\Lambda}^{(1)} \bigg(p; \sqrt{\frac{\omega_{\Lambda}}{\omega_{\mathsf{UV}}}} a_{+,\mathsf{UV}}, \sqrt{\frac{\omega_{\mathsf{UV}}}{\omega_{\Lambda}}} a_{+,\mathsf{UV}} \bigg) - \sqrt{\frac{\omega_{\mathsf{UV},p}}{\omega_{\Lambda,p}}} a_{+,\mathsf{UV}}^{(1)}(p; a_{+,\mathsf{UV}}, a_{+,\mathsf{UV}}) \bigg\}.$$
(51)

Using the fact that coherent state is a eigenstate for annihilation operator:

$$a_{\Lambda}(p) \left| rf_{0} \right\rangle_{\Lambda} = rf_{0}(p) \left| rf_{0} \right\rangle_{\Lambda} \tag{52}$$

we can calculate error correction condition.