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Introduction - Tensor network

Partition functions and expectation values of physical quantities can be expressed as a

tensor network.
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Introduction - Tensor renormalization group

The tensor renormalization group [Levin-Nave, 2007] is a method for the truncation of tensor

networks.

We focus on the higher-order tensor renormalization group (HOTRG) method shown in

the figure below,
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Introduction Tensor renormalization group

The isometry matrix can be obtained from the tensor T of the network using the singular

value decomposition (SVD).
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Entanglement entropy

Definition of the entanglement entropy of subregion A:

SA = −TrρA log ρA , ρA = TrBρ

The reduced density matrix ρA of the subregion A can be expressed as a tensor network.
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→ We use the HOTRG method for evaluating the reduced density matrix.



Our approach to reduced density matrix [Hayazaki-Kadoh-Takeda-GT, arXiv:2312.xxxxx]

We develop a general method for evaluating the reduced density matrix of the subregion of any

spatial size l based on the HOTRG. cf. [Luo-Kuramashi, 2023] for the case of l = Lx/2

𝑇"𝜌! 𝑙, 𝐿" #$~
For the subregion A
of any size 𝑙

𝑖

𝑗
𝐵

⋯
⋯



Detail of our approach

The most important point of our method is that we decompose the reduced density matrix

ρA into a contraction of coarse-grained tensor T̃ and the boundary factor B.
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The boundary factor B consists of isometry matrices U (k) and U (k)† which perform the

coarse-graining of tensor T (k) in x direction.



Detail of boundary factor B

For simplicity, we consider the case that Lx = 2N and l = 20, 21, 22, . . . , 2N−1. In this

case, the boundary factor Bx1x′
1x2x′

2ij
for l = 2n (0 < n < N) is given by the product of a

contraction of the isometry matrices and a Kronecker delta:
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Detail of boundary factor B

In particular, the boundary factor B becomes trivial when l = 2N−1 = Lx/2
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Numerical results in the two-dimensional Ising model

We consider the two-dimensional Ising model
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We set spatial length Lx = 2N , temporal length Lt = α · 2N and temperature T to the

critical temperature Tc.

We take sufficiently large α and conformally map

the plane into a cylinder of spatial length Lx.

We evaluate the entanglement entropy SA of
subregion A of spatial size l = 2n in two cases:

1 Lx = 211 = 2048 and α = 32

2 fixed x = 2n/2N and α = 8
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Numerical results in the two-dimensional Ising model

The entanglement entropy SA of the theory on a cylinder is given by

SA(n,N) =
c

3
log

(
2N

πγ
sin

(
2n

2N
π

))
+ k

where γ is a UV regulator, c a central charge, and k a constant.

We extract c from the difference of the entanglement entropy in n using this eq.

1 fixed Lx = 2048

c = (S(n+ 1, N)− S(n,N)) · 3

(
log

sin
(
2n+1−Nπ

)
sin (2n−Nπ)

)−1

2 fixed x = 2n/2N

c = (S(n+ 1, N)− S(n,N)) · 3

log 2



Result - Entanglement entropy with fixed Lx = 2048 and α = 32
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The entanglement entropy exhibits the behavior consistent with a logarithmic function as

expected.



Result - Central charge with fixed Lx = 2048 and α = 32
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With sufficiently large Dcut, central charge shows the plateau behavior from n = 3 to 7.

Averaging the data of n = 3, 4, 5, 6, and 7 with Dcut = 96, we determine the central

charge c = 0.5002(7).



Result - Entanglement entropy with fixed x = 2n/2N and α = 8
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x = 2n/2N = 1/8
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x = 2n/2N = 1/32

With fixed x = 2n/2N , the entanglement entropy shows the behavior consistent with a

logarithmic function.



Result - Central charge with fixed x = 2n/2N and α = 8
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x = 2n/2N = 1/8

 0.48

 0.485

 0.49

 0.495

 0.5

 0.505

 0.51

 0.515

 0.52

 0  2  4  6  8  10

C
en

tr
al

 c
ha

rg
e

n

Dcut=8
Dcut=16
Dcut=32
Dcut=64
Dcut=80
Dcut=96

c=0.5

x = 2n/2N = 1/32

In the case of x = 1/8, the central charge c exhibits the plateau behavior around c = 0.5 ,

while c no longer shows such behavior with x = 1/32 due to the extra truncation.

Averaging the data of n = 4, 5, 6, with Dcut = 96 and x = 1/8, we determine the central

charge c = 0.50013(3).



Conclusion and discussion

Conclusion

We propose a general method based on the HOTRG for evaluating the entanglement

entropy.

Our method makes it possible to examine the entanglement entropy of a subregion of any

spatial size.

Applying our method to the two-dimensional Ising model yields results very close to the

theoretical value.

Future direction

Higher-dimensional quantum field theories

Relation between holography and tensor network
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