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Introduction

Liouville integrability

An integrable model (IM) is a Hamiltonian system with

number of degrees of freedom = number of conserved charges

e The integrable model has (infinite) numbers of conserved
charges.

e The equations of motion for an integrable field theory can be
rewritten into Lax pairs, which lead to two linear problems.

e It is possible to diagonalize the linear problems with affine Lie
algebra structures, where the diagonal elements turn to be
classical conserved currents. [Drinfeld, Sokolov (1984)]
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Motivation

The quantum integrable models

e The scattering S-matrix (satisfied by TBA Equations) is
exactly solvable. However, its conserved charges are difficult
to calculate (2d effective CFT).

e Especially in affine Toda field theory, few of them were known.

The ODE/IM correspondence [porey-Tateo 9812211

e |t is a relation between the spectral analysis of the ordinary
differential equation and the “functional relations” in
quantum M.

e The simplest one is between [¢202 + V(z) — E]i(z,€) = 0
and the Sine-Gordon model.
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Motivation

Maybe we can obtain the quantum conserved charges from
the classical ones!
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Inspiration

The classical conserved currents for the Agl) Toda field theory

2 zZ)— 2 z
oy~ ETE T
b(2) = 55 (-5T'(ef ~6T(2)T"(2) + T(2) + 2T (o)),

The WKB solutions for (¢207 + €?uy(z) — p(z))w(z, €) = 0 with
WKB ansatz ¢(z,¢) = exp(% [# dz P(z,€)) are
Po(z) = v/ p(2),

P1(z) = —%82 In P()7

Py w(z) 3P
Pa(z) = . ,
2(2) = 16p2 * 2P, T O:(16p2)
/2 1
P3(z) _ 782(7112(2) 3P0 PO

4P T 16P7 8T>g)’
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Affine Toda field equations

The action of § affine Toda field theory in 2d complex plane:
S = /d2 ~0,¢- 8z¢+< )[Z exp Ba, +exp (ﬁao . ¢)]}

Its equation of motion: the g affine Toda field equation is

0:0,9(z, Z) < ) Za, exp (Baj - ¢) + agexp (Bag - ¢)] =

r
— Viz 3 .
= Zai ¢i(z,2), B : a coupling constant,

~ m : a mass parameter.
a;(a}) : roots(coroots) of §, P
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Affine Toda field equations

The affine Toda field equations can be separated into Lax pairs:

,
L=0,+B> 0:0i(z,Z)H; + mAA,

i=1
L=0s+ePXn ¢iHi(m)\—17\) B iz diHi

E.;, E_u;: ladder operators, H; = a,\/ - H: Cartan subalgebras
A: a spectral parameter,

N=3"_gEyand N=>1_ E_,,

The flatness condition giving the equation of motion
[£,L] =0

is the integrability condition of the linear problem

LY =LV =0
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Affine Toda field equations

Take the conformal transformation (p" is the co-Weyl vector)
z—=w(z), z—w(2), ¢—d=0¢—p"log(d,wd:w),
then the affine Toda field equations will be modified into

050,6(z,2) — [Z a;j exp (a; . qﬁ) + p(z)p(Z) g exp (ao . ¢)] =0

i=1
with p(z) = (0,w)",  p(Z) = (9:w)". The modified Lax
operators are

»Cm = az + Zaz¢i(Z,Z)Hi + )‘(Z Eai + p(Z)EOéo)’

i=1 i=1

r
Lom=0:+ X 'e "M (p(2)Eay + > E o).
i=1
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The diagonalization approach

It is possible to diagonalize the linear problem and the diagonal

elements are classical conserved currents [prinfeld, Sokolov (1984)].

Let us focus on the holomorphic part L ([Lm, Lm] = 0).
We replace the spectral parameter A with Planck constant € = A~1.

r r
Lm=eD;+ ¢y 0:0i(2)Hi + Y Ea, + p(2)Eay.

i=1 i=1
One can view it as a covariant derivative with connection:

r r
A(z) =€) 0:0i(2)Hi + ) Ea, + p(2)Eqq
i=1 i=1
Then the gauge transformation is given by

GauT[A(2)] = T H2)A(2) T(2) + €T X(2)0,T(2).
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The diagonalization approach

The transformation matrix T can be decomposed into
T(Z) = Td Td—l e T3 T2 T1.

d is the representation dimension and T;(z) are d x d matrices

satisfying
1, if a=b,
Ti(2)ap = { gin(z,€), if a=i, b#i, 1<b<d,
0, otherwise.

The decomposition means we diagonalize the connection row by
row from the bottom to the top. For instance

1

Tq = 1 )

gd1 8d2 - 8dd-1 1
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The diagonalization approach

The connection after the first gauge transformation:

Alz) = " ,

Gaqu[A]dJ Gaqu[A]d’g Gaqu[A]d_d,l Gaqu[A]d,d

For each step of the gauge transformation Gaur,, we fix gj p(z)
such that the connection A’(z) satisfies (the red parts)

Ay=0, 1<j<d, j#i
The final diagonalized connection Agiag(2) is given by
Adiag(z) = GauT, 0 Gaur, ...GauT, , © GauT, , o GauT,[A(Z)].

11
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The diagonalization of A"

The diagonal elements of Agl) can be summarized as (d(x) : total

e = (T 2),

derivatives)

f(z,¢€) in Agl) satisfies the Riccati equation
f2(z,€) + ef'(z,€) — €ua(2z) — p(z) = 0.

u(z) = ¢'(2)? — ¢"(2) is the classical energy-momentum tensor.
f(z,€) can also be obtained from

€202 — ua(2) — p(2)]v(z,€) = 0
with the WKB ansatz (z,¢) = exp( [ dz f(z, €)).

One can solve f(z, €) perturbatively after expanding f = > fre” 4,
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Generalized to other affine Lie algebras

The ODEs satisfied by 1(z,€) = exp(2 [ dz f(z,€))

AW 2 (=6)"(0z — 0201)(0z — Dz 2 + Dzhr)
(02 4+ 0:0r)Y(2,€) = p(2)(z, €)

AD (g, — 0,0) - (0, — Doy + Oor1)(Os + Doy — Duthr—1)
- (0 4 0:01)¢ — 24/p(2)0:/p(2)1) = 0

B 1 (0. — 0:1) -+ (02 — 20200, + Ozp—1)02(0z + 206, — D= br—1)
(02 4 021)1h — 4/ P(2)0/P(2)1h = 0

D@ . 2D, — 8,¢1) - (8; — 20,0, + Bocbr—1)0:(0; + 20.¢, — Dy br—1)
(0 + 021)0 — 4p(2)0; 'p(z)v =0

DM (D, — 8,¢1) - (8: — Dopy — Duthr—1 + Dor—2)0;
(02 + 0:6¢ + 0ehr—1 — D2pr—2) -+ (02 + Dz )0 — 4/ p(2)D:/p(2)1) = 0

These (pseudo)-ODEs have been also found in
[Dorey, Dunning, Masoero, Suzuki, Tateo (2007); Ito, Locke (2015)]. 13
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Conserved current vs. WKB solution

The classical conserved currents for the modifed Agl) Toda field

theory
fo(z) = v/ p(2),
fi(z) = —%82 In fy,

_ &, w2

3f
f(z) = 1672 T 2f

+ aZ( 167‘;)2 )a

The appearance of p(z): conformal transformation z — w(z)

"o 2
dw = /p(z)dz, io(w(z)) = L [uz(Z) + %}

After the conformal transformation,
2 2 p(w 2 92 tr(w) — 03 (w
fo(w) =1, fh(w)= %’ fa(w) = 22 2( )8 5( )

14



Ongoing work
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Quantum conserved charges via ODE/IM correspondenciiiig

e Set p(z) = (22 — 1) and ¢(z) — /log(z), then, the integral
along the loop: 0o - e*0 to oo - e~ around z = 1.

(1+3)? 20200 — 1)z2072 1
N _
@ /c i (222 (z2¢—-1) - 48(z2 — 1)2 822,/(z%> — 1))

1 1
= [0+ ) — a4 T()
e Quasi-momentum: P = 2’ 5. Coupling constant: B% = %
P2 1
~N — — — = /
Ql ,82 24 1,

is the first conserved charge (effective central charge) for the
quantum sine-Gordon model (effective CFT).

e Similar calculations for higher orders or ranks are in progress.

15
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Summary

e The diagonal elements of linear problems are the WKB
solutions to a set of (pseudo) ordinary differential equations.

e There is a relation between the conserved currents and the
WKB solutions via the conformal transformation.

e The corresponding quantum conserved charges are under
calculation.

16



Thank you for watching.
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