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Introduction

Liouville integrability

An integrable model (IM) is a Hamiltonian system with

number of degrees of freedom = number of conserved charges

• The integrable model has (infinite) numbers of conserved

charges.

• The equations of motion for an integrable field theory can be

rewritten into Lax pairs, which lead to two linear problems.

• It is possible to diagonalize the linear problems with affine Lie

algebra structures, where the diagonal elements turn to be

classical conserved currents. [Drinfeld, Sokolov (1984)]
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Motivation

The quantum integrable models

• The scattering S-matrix (satisfied by TBA Equations) is

exactly solvable. However, its conserved charges are difficult

to calculate (2d effective CFT).

• Especially in affine Toda field theory, few of them were known.

The ODE/IM correspondence [Dorey-Tateo 9812211]

• It is a relation between the spectral analysis of the ordinary

differential equation and the “functional relations” in

quantum IM.

• The simplest one is between [ϵ2∂2z + V (z)− E ]ψ(z , ϵ) = 0

and the Sine-Gordon model.

Maybe we can obtain the quantum conserved charges from

the classical ones!
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Motivation

Maybe we can obtain the quantum conserved charges from

the classical ones!
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Inspiration

The classical conserved currents for the A
(1)
1 Toda field theory

I2(z) =
T (z)

2
,

I4(z) =
∂2
zT (z)− T 2(z)

8
,

I6(z) =
1

32

(
−5T ′(z)2 − 6T (z)T ′′(z) + T (4)(z) + 2T (z)3

)
,

The WKB solutions for
(
ϵ2∂2z + ϵ2u2(z)− p(z)

)
ψ(z , ϵ) = 0 with

WKB ansatz ψ(z , ϵ) = exp(1ϵ
∫ z

dz P(z , ϵ)) are

P0(z) =
√

p(z),

P1(z) = −1

2
∂z lnP0,

P2(z) =
P ′′
0

16P2
0

+
u2(z)

2P0
+ ∂z(

3P ′
0

16P2
0

),

P3(z) = −∂z(−
u2(z)

4P2
0

+
3P

′2
0

16P4
0

− P
′′
0

8P3
0

),
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Affine Toda field equations

The action of ĝ affine Toda field theory in 2d complex plane:

S =

∫
d2z

{1

2
∂zϕ·∂̄z̄ϕ+

(m2

β

)
[

r∑
i=1

exp
(
βαi · ϕ

)
+exp

(
βα0 · ϕ

)
]
}
.

Its equation of motion: the ĝ affine Toda field equation is

∂̄z̄∂zϕ(z , z̄)−
(m2

β

)
[

r∑
i=1

αi exp
(
βαi · ϕ

)
+ α0 exp

(
βα0 · ϕ

)
] = 0.

ϕ(z , z̄) =
r∑

i=1

α∨
i ϕi (z , z̄),

αi (α
∨
i ) : roots(coroots) of ĝ,

β : a coupling constant,

m : a mass parameter.
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Affine Toda field equations

The affine Toda field equations can be separated into Lax pairs:

L = ∂z + β

r∑
i=1

∂zϕi (z , z̄)Hi +mλΛ,

L̄ = ∂z̄ + e−β
∑r

i=1 ϕiHi (mλ−1Λ̄) eβ
∑r

i=1 ϕiHi .

Eαi , E−αi : ladder operators, Hi = α∨
i · H: Cartan subalgebras

λ: a spectral parameter,

Λ =
∑r

i=0 Eαi and Λ̄ =
∑r

i=0 E−αi

The flatness condition giving the equation of motion

[L, L̄] = 0

is the integrability condition of the linear problem

LΨ = L̄Ψ = 0 7
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Affine Toda field equations

Take the conformal transformation (ρ∨ is the co-Weyl vector)

z → w(z), z̄ → w̄(z̄), ϕ→ ϕ̂ = ϕ− ρ∨ log(∂zw∂z̄ w̄),

then the affine Toda field equations will be modified into

∂z̄∂zϕ(z , z̄)− [
r∑

i=1

αi exp
(
αi · ϕ

)
+ p(z)p̄(z̄)α0 exp

(
α0 · ϕ

)
] = 0

with p(z) = (∂zw)h, p̄(z̄) = (∂z̄ w̄)h. The modified Lax

operators are

Lm = ∂z +
r∑

i=1

∂zϕi (z , z̄)Hi + λ(
r∑

i=1

Eαi + p(z)Eα0),

L̄m = ∂z̄ + λ−1e−ϕiHi (p̄(z̄)Eα0 +
r∑

i=1

E−αi )e
ϕiHi .
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The diagonalization approach

It is possible to diagonalize the linear problem and the diagonal

elements are classical conserved currents [Drinfeld, Sokolov (1984)].

Let us focus on the holomorphic part Lm ([Lm, L̄m] = 0).

We replace the spectral parameter λ with Planck constant ϵ = λ−1.

ϵLm = ϵ∂z + ϵ

r∑
i=1

∂zϕi (z)Hi +
r∑

i=1

Eαi + p(z)Eα0 .

One can view it as a covariant derivative with connection:

A(z) = ϵ

r∑
i=1

∂zϕi (z)Hi +
r∑

i=1

Eαi + p(z)Eα0

Then the gauge transformation is given by

GauT [A(z)] = T−1(z)A(z)T (z) + ϵT−1(z)∂zT (z).
9
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The diagonalization approach

The transformation matrix T can be decomposed into

T (z) = TdTd−1 . . .T3T2T1.

d is the representation dimension and Ti (z) are d × d matrices

satisfying

Ti (z)ab =


1, if a = b,

gi,b(z , ϵ), if a = i , b ̸= i , 1 ≤ b ≤ d ,

0, otherwise.

The decomposition means we diagonalize the connection row by
row from the bottom to the top. For instance

Td =



1

. . .

1

1

gd,1 gd,2 · · · gd,d−1 1

 ,
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The diagonalization approach

The connection after the first gauge transformation:

A′(z) =


. . .

GauTd
[A]d,1 GauTd

[A]d,2 · · · GauTd
[A]d,d−1 GauTd

[A]d,d

 ,

For each step of the gauge transformation GauTi
, we fix gi ,b(z)

such that the connection A′(z) satisfies (the red parts)

A′
ij = 0, 1 ≤ j ≤ d , j ̸= i .

The final diagonalized connection Adiag(z) is given by

Adiag(z) = GauT1 ◦ GauT2 . . .GauTd−2
◦ GauTd−1

◦ GauTd
[A(z)].
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The diagonalization of A(1)
1

The diagonal elements of A
(1)
1 can be summarized as (d(∗) : total

derivatives)

Adiag(z) =

(
−f (z ,−ϵ) + d(∗) 0

0 f (z , ϵ)

)
,

f (z , ϵ) in A
(1)
1 satisfies the Riccati equation

f 2(z , ϵ) + ϵf ′(z , ϵ)− ϵ2u2(z)− p(z) = 0.

u2(z) = ϕ′(z)2 − ϕ′′(z) is the classical energy-momentum tensor.

f (z , ϵ) can also be obtained from

[ϵ2∂2z − ϵ2u2(z)− p(z)]ψ(z , ϵ) = 0

with the WKB ansatz ψ(z , ϵ) = exp(1ϵ
∫
dz f (z , ϵ)).

One can solve f (z , ϵ) perturbatively after expanding f =
∑∞

n=0 fnϵ
n

12
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Generalized to other affine Lie algebras

The ODEs satisfied by ψ(z , ϵ) = exp(1ϵ
∫
dz f (z , ϵ))

A(1)
r : (−ϵ)h(∂z − ∂zϕ1)(∂z − ∂zϕ2 + ∂zϕ1)

· · · (∂z + ∂zϕr )ψ(z , ϵ) = p(z)ψ(z , ϵ)

A
(2)
2r−1 : ϵ

(2r−1)(∂z − ∂zϕ1) · · · (∂z − ∂zϕr + ∂zϕr−1)(∂z + ∂zϕr − ∂zϕr−1)

· · · (∂z + ∂zϕ1)ψ − 2
√

p(z)∂z
√

p(z)ψ = 0

B(1)
r : ϵ2r (∂z − ∂zϕ1) · · · (∂z − 2∂zϕr + ∂zϕr−1)∂z(∂z + 2∂zϕr − ∂zϕr−1)

· · · (∂z + ∂zϕ1)ψ − 4
√

p(z)∂z
√

p(z)ψ = 0

D
(2)
r+1 : ϵ

(2r+2)(∂z − ∂zϕ1) · · · (∂z − 2∂zϕr + ∂zϕr−1)∂z(∂z + 2∂zϕr − ∂zϕr−1)

· · · (∂z + ∂zϕ1)ψ − 4p(z)∂−1
z p(z)ψ = 0

D(1)
r : ϵ(2r−2)(∂z − ∂zϕ1) · · · (∂z − ∂zϕr − ∂zϕr−1 + ∂zϕr−2)∂

−1
z

(∂z + ∂zϕr + ∂zϕr−1 − ∂zϕr−2) · · · (∂z + ∂zϕ1)ψ − 4
√

p(z)∂z
√

p(z)ψ = 0

These (pseudo)-ODEs have been also found in

[Dorey, Dunning, Masoero, Suzuki, Tateo (2007); Ito, Locke (2015)]. 13
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Conserved current vs. WKB solution

The classical conserved currents for the modifed A
(1)
1 Toda field

theory

f0(z) =
√

p(z),

f1(z) = −1

2
∂z ln f0,

f2(z) =
f ′′0
16f 20

+
u2(z)

2f0
+ ∂z(

3f ′0
16f 20

),

The appearance of p(z): conformal transformation z → w(z)

dw =
√

p(z)dz , û2
(
w(z)

)
=

1

p(z)

[
u2(z) +

4pp′′ − 5p′2

16p2

]
After the conformal transformation,

f̂0(w) = 1, f̂2(w) =
û2(w)

2
, f̂4(w) =

∂2w û2(w)− û22(w)

8
.
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Quantum conserved charges via ODE/IM correspondence

• Set p(z) = (z2α − 1) and ϕ(z) → l log(z), then, the integral
along the loop: ∞ · e+i0 to ∞ · e−i0 around z = 1.

Q1 =

∫
C

dz
( (

l + 1
2

)2
2z2

√
(z2α − 1)

+
2α(2α− 1)z2α−2

48(z2α − 1)
3
2

− 1

8z2
√

(z2α − 1)

)
= [(l +

1

2
)2 − 1

24
(4α+ 4)] · Γ(. . . )

• Quasi-momentum: P =
l+ 1

2
2α+2 , Coupling constant: β2 = 1

α+1

Q1 ∼
P2

β2
− 1

24
= I1,

is the first conserved charge (effective central charge) for the

quantum sine-Gordon model (effective CFT).

• Similar calculations for higher orders or ranks are in progress.
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Summary

• The diagonal elements of linear problems are the WKB

solutions to a set of (pseudo) ordinary differential equations.

• There is a relation between the conserved currents and the

WKB solutions via the conformal transformation.

• The corresponding quantum conserved charges are under

calculation.
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Thank you for watching.
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