EFT Approaches to cosmological collider program

Suro Kim

Korea Institute for Advanced Science

w/Toshifumi Noumi, Keito Takeuchi, Siyi Zhou(Kobe U.) And ongoing work

Oct. 4, The 3rd "Asian-European-Institutes Workshop for BSM"

Cosmic Inflation

Cosmic Inflation

Inflation as High Energy Frontier

• Typical energy scale of inflation $H \sim 10^{14} \, {\rm GeV}$

c.f LHC $E\sim 10^5~{\rm GeV}$

- It is natural to use inflation to probe high energy physics
- Primordial non-Gaussianity as a particle collider (Cosmological Collider Program)

Chen and Wang[2010] Baumann and Green[2012] Noumi, Yamaguchi and Yokoyama[2013] Arkani-Hamed and Maldacena[2015] Lee, Baumann and Pimentel[2016]

Cosmological Collider Physics

 $\begin{array}{c} \overbrace{\sigma}\\ \sigma \\ \end{array} \text{ by fluctuation @ de-Sitter temperature} 10^{14} \text{GeV} \end{array}$

NG generated during inflation

Function of the triangle shape

Cosmological Collider Physics

Target energy scale

Target energy scale

Difficult with oscillating feature because of Boltzmann suppress $\propto e^{-\pi\mu}$ $\mu = \sqrt{\frac{m^2}{H^2} - \frac{9}{4}}$

e.g. $m \sim 3H$, the signal is suppressed by $\sim 10^{-5}$

When we want to see higher scale

@ Particle collider

1. Build a new fancy collider

2. Study effective interactions carefully

Prediction of Weak-boson from 4-fermi interaction

When we want to see higher scale

- @ Cosmological collider
 - 1. Build a new fancy Universe

2. Study effective interactions carefully

When we want to see higher scale

@ Cosmological collider

1. Build a new fancy Universe

But we cannot so we focus on

2. Study effective interactions carefully

Effective coupling @ Particle Collider

Q. What are important imprints of heavy particles on inflaton effective interactions?

A. Sign of the effective interactions

IR expansion of scattering amplitudes

Expand the scattering amplitude in Mandelstam variables

$$\oint_{\phi} \oint_{\phi} = M(s,t) = \sum_{p,q} a_{p,q} s^{p} t^{q} = \sum_{p} b_{p}(t) s^{p}$$
We neglected massless pole

Coefficients of s^p

$$\stackrel{|\underline{S}|}{=} b_p(t) = \sum_q a_{p,q} t^q = \oint_C \frac{ds}{2\pi i} \frac{M(s,t)}{s^{p+1}}$$

assuming gravity is subdominant

Wilson-Coefficients

• Coefficients of *s*^{*p*}

$$\begin{split} b_p(t) &= \sum_q a_{p,q} t^q = \oint_C \frac{ds}{2\pi i} \frac{M(s,t)}{s^{p+1}} \\ &= \left(\int_{C_1'} + \int_{C_2'} + \int_{C_3'} + \int_{C_4'} \right) \frac{ds}{2\pi i} \frac{M(s,t)}{s^{p+1}} \end{split}$$

Wilson-Coefficients

• Coefficients of *s*^{*p*}

UV information in IR coefficients

• For example, tree-level effect is

UV information in IR coefficients

• For example, tree-level effect is

$$b_{p}(t) = \sum_{q} a_{p,q}t^{q} = \left(\int_{C_{3}} + \int_{C_{4}} \right) \frac{ds}{2\pi i} \frac{M(s,t)}{s^{p+1}}$$

$$= \sum_{n} \left[\frac{g_{n}^{2}P_{\ell_{n}}\left(1 + \frac{2t}{m_{n}^{2}}\right)}{(m_{n}^{2})^{p+1}} - \frac{g_{n}^{2}P_{\ell_{n}}\left(1 + \frac{2t}{m_{n}^{2}}\right)}{(-m_{n}^{2} - t)^{p+1}} \right]$$
Residue for each poles
$$@ m_{n} \text{ and } -m_{n} - t$$

$$\textcircled{S}$$

$$Propagation of on-shell particle with mass m_{n} and spin $\ell_{n}$$$

Continuous sum over n to incorporate branch cuts from loops

Positivity bound on s²ⁿ coefficients

- $a_{2n,0}$ is always positive and a_{2n+1} is 0
- This is well-known as positivity bound

Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi[2006]

 Universal and elegant, but detailed information such as spin of intermediate state is obscured at the cost

Let's go beyond the positivity bound!

Positivity bound on *s^pt* coefficients

• For even p, the sign of $a_{p,1}$ depends on spin

$$\begin{array}{ll} \text{If, } l_n > l^\star = \displaystyle \frac{-1 + \sqrt{2p+5}}{2}, & a_{p,1} \geq 0 \\ & 0 \\ & \text{Otherwise,} & a_{p,1} \leq 0 \end{array} \end{array}$$

• For odd p, $a_{p,1} \ge 0$ is always positive

Spin dependence of s²t coefficients

Effective field theory of Inflaton

EFT of Inflaton

$$\mathscr{L} = -\frac{1}{2} (\partial_{\mu}\phi)^{2} + \frac{\alpha}{\Lambda^{4}} (\partial_{\mu}\phi)^{4} + \frac{\beta}{\Lambda^{6}} (\nabla_{\mu}\partial_{\nu}\phi)^{2} (\partial_{\rho}\phi)^{2} + \cdots$$

 Inflaton enjoys an approximate shift symmetry when slow-roll approximation is good enough

Positivity bound

$$\mathscr{L} = -\frac{1}{2} \left(\partial_{\mu}\phi\right)^{2} + \frac{\alpha}{\Lambda^{4}} \left(\partial_{\mu}\phi\right)^{4} + \frac{\beta}{\Lambda^{6}} \left(\nabla_{\mu}\partial_{\nu}\phi\right)^{2} \left(\partial_{\rho}\phi\right)^{2} + \cdots$$

• $\alpha > 0$ follows from unitarity and analyticity.

Beyond positivity bound

$$\mathscr{L} = -\frac{1}{2} (\partial_{\mu} \phi)^{2} + \frac{\alpha}{\Lambda^{4}} (\partial_{\mu} \phi)^{4} + \frac{\beta}{\Lambda^{6}} (\nabla_{\mu} \partial_{\nu} \phi)^{2} (\partial_{\rho} \phi)^{2} + \cdots$$

• The sign of β depends on the details of UV completion.

α SK, Toshifumi Noumi, Keito Takeuchi, Siyi Zhou [2019] $\alpha > 0, \beta < 0$ $\alpha > 0, \beta > 0$ At least one At least one scalar spinning state @ High energy Positivity @ High energy bounds Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi .[2006] $\alpha < 0$ Inconsistent with unitarity

Summary: Cosmological collider program

Summary: Cosmological collider program

Field space geometrical approach to EFT

$$\mathscr{L} = -\frac{1}{2}G_{IJ}(\phi)\partial_{\mu}\phi^{I}\partial^{\mu}\phi^{J} + V(\phi)$$

- $G_{IJ}(\phi)$: Field space metric
- Scattering amplitudes are invariant under field redefinitions
- Field redefinition = coordinate transformation of field space
- Scattering amplitudes can be written by geometrical invariants of the field space

Field space geometrical approach to EFT

- 4pt scattering amplitudes proportional to s can be written by Riemann curvatures of field space
- Recently, generalizations to vector fields and fermions are discussed
 Alonso, Kanshin, Saa [2017] Finn, Karamitsos, Pilaftsis [2021]

Helset, Jenkins, Manohar [2022]

Generalization to higher derivatives

$$\mathcal{L} = -\frac{1}{2}(\partial_{\mu}\phi)^{2} + \frac{\alpha}{\Lambda^{4}}(\partial_{\mu}\phi\partial^{\mu}\phi)^{2} + \frac{\beta}{\Lambda^{6}}(\partial_{\mu}\partial_{\nu}\phi)^{2}(\partial_{\rho}\phi)^{2} + \cdots$$

• Method using jet bundles (Lagrange space)

arXiv: 2305.09722 (Craig, Lee, Lu, Sutherland) arXiv: 2307.15742 (Craig, Lee) arXiv: 2308.00017 (Alminawi, Brivio, Davighi)

- Derivative of torsions give s^2 amplitudes
- What is the geometrical expression of s^2t amplitudes?
- What is the geometrical interpretation of the positivity bound and beyond?

Appendix

Open superstring amplitude

 Exact cancellation between contributions of scalar and higher spins

Open superstring amplitude

Energy scale of target

• Typically
$$F_{NL} = \frac{\langle \zeta \zeta \zeta \rangle}{\langle \zeta \zeta \rangle^{3/2}} \sim \frac{H^2}{m^2}$$

• For example, if $H \sim 3 \times 10^{13}$

Fermion Loop

Scalar intermediate states dominate over spinning ones.

Inflationary fluctuation

• Inflationary background $\langle \phi \rangle = \overline{\phi}(t)$ and fluctuation $\delta \phi$ $\phi(t, \mathbf{x}) = \overline{\phi}(t) + \delta \phi(t, \mathbf{x})$ Inflaton sector —

Inflationary fluctuation

• Inflationary background $\langle \phi \rangle = \overline{\phi}(t)$ and fluctuation $\delta \phi$ $\phi(t, \mathbf{x}) = \overline{\phi}(t) + \delta \phi(t, \mathbf{x})$ Inflaton sector —

KK graviton

 Scattering amplitude which is generated by the exchange of the KK graviton

$$M(s,t) = \frac{g^2}{6} \left[\frac{-2s^2 + 3(t^2 + u^2)}{m^2 - s} + \frac{-2t^2 + 3(u^2 + s^2)}{m^2 - t} + \frac{-2u^2 + 3(s^2 + t^2)}{m^2 - u} \right]$$
$$\rightarrow \frac{4g^2}{3m^2} \left(s^2 + st + t^2 \right) + \frac{5g^2}{2m^4} \left(s^2t + st^2 \right)$$

Q. How to read off the sign of the α and β

$$\mathscr{L} = -\frac{1}{2} (\partial_{\mu}\phi)^{2} + \frac{\alpha}{\Lambda^{4}} (\partial_{\mu}\phi)^{4} + \frac{\beta}{\Lambda^{6}} (\nabla_{\mu}\partial_{\nu}\phi)^{2} (\partial_{\rho}\phi)^{2} + \cdots$$

A. See the shape of the non-Gaussainities

3-point function

•
$$\left\langle \delta \phi_{k_1}(\tau) \delta \phi_{k_2}(\tau) \delta \phi_{k_3}(\tau) \right\rangle$$

shape

is the function of the triangle

• If α term and β term make the different shape dependence, we can distinguish and fix the sign of the α and β

 $\tau \rightarrow 0$

• Schematically, we write $\left\langle \delta\phi_{k_1}\delta\phi_{k_2}\delta\phi_{k_3} \right\rangle \propto \frac{1}{k_1^2 k_2^2 k_3^2} \left\{ \delta^3 \left(\sum_i k_i \right) \left[\alpha \mathscr{A}_{3pt}(k_i) + \frac{\beta m^2}{H^2} \mathscr{B}_{3pt}(k_i) \right] \right\}$ Momentum conservation

Shape function of α term and β

