

The Characterisation of the Higgs

Where does the Higgs particle live?

The LHC however cannot see beyond this neighbourhood

What if we want to see the world beyond our neighbourhood?

Where does the Higgs particle live?

Where does the Higgs particle live?

SMEFT or HEFT/SMEFT?

This very visual distinction has a rigorous formulation

[Alonso, Jenkins & Manohar, 2015] [Cohen, Craig, Sutherland & Lu 2020]

CCWC linearisation lema

This non-local Q finds an A in Cosmology

Think of a first order phase transition e.g.

[Banta 2022] [Kanemura, Nagai & Tanaka 2022]

This non-local Q finds an A in Cosmology

Review the SM case with extrema history

Our quotient theory

Finite temperature potential

One loop in thermal and vacuum corrections

Performed in Feynman gauge Infrared problem restrictions $UV \operatorname{cutoff} \quad T > 4 \pi \sqrt{}$

Symmetry restoration at high temperature

Walls

Summary

Characterising the Higgs particle will take multiple sources

One of the fundamental questions within reach is the presence or absence of symmetry restoring point

Our toy HEFT/SMEFT theory showed cosmological phenomenology and an interplay with LHC

Much more to explore