Feasibility test of cavity exploration using a prototype muography detector <u>Ayumu Okuda¹</u>, Shoichiro Kawase¹, Naoya Okamoto¹, Yukinobu Watanabe¹ (¹Kyushu University)

1. Introduction

Cave-ins have occurred in recent years, due to **underground cavities** created during tunnel excavation using shield tunnel excavation

It is **difficult to detect cavities**

Ground

- deeper than 10 m underground using **conventional exploration** methods (ex. ground-penetrating radar)
- We are developing an exploration method using the muography technique **Cosmic-ray muon**

5. Feasibility test

2. Our goal and scope of this study

Goal

To develop a disaster prevention system for cave-ins

Scope of this study

To detect a cavity using prototype detector

3. Prototype detector

1D detector muon **Detector principle**

Method

- A cavity was created by **piling clay bricks (2.0 g/cm³)** above the detector Transmittance
- Muon tracks were reconstructed by using two position information (y_1, y_2)
- y-coordinate of the muon track at the brick height (=y') was extrapolated using y_1 and y_2

Result With cavity [/hour og afe Ratio Without tunos of cavity both 30 20 10 <u>–</u>200–150–100 –50 0 50 100 150 200 Position at the height bricks placed (y') [cm]

is defined as $m{n}_{
m with\ cavity}(m{y}',m{y}'+\Deltam{y}')$ $n_{\text{without cavity}}(y', y' + \Delta y')$ $n(y', y' + \Delta y')$ is the number of muons passed [$y', y' + \Delta y'$)

Cavity area 80.1 guçe 1.07 1.07 1.06 1.05 g 1.04 1.03 1.02 1.01 0.99 -20 20 60

- > The position of the muon is measured through each 1D detector
- > Muon's track are reconstructed from the coordinates of **two points**

Plastic scintillator (PS) (Eljen technology EJ200)

Photomultiplier (PMT) (Hamamatsu H6410)

PS and PMT are glued by optical cement EJ500

4. Principle of position measurement

The muon passing position is determined from the time difference between the left and right PMT signals (Δt) Position at the height bricks placed (y') [cm]

Transmittance is significantly larger than unity around $-20 \text{ cm} \le y' \le 20 \text{ cm}$ (cavity area) consistent with the cavity's position and size

6. Comparison with PHITS

The experimental result was compared with PHITS calculations [2] Method

- PHITS simulation was performed incorporating a realistic building structure
- The incident muons were generated using **PARMA model** [3]

Result PHITS arb.unit 1.8 1.6 **Experiment** 1.4 1.2 0.8 0.6

$$\Delta t = t_{\rm L} - t_{\rm R} \qquad \qquad \Delta t = 2y/v$$

$$\longleftrightarrow \quad \Delta t = \frac{L/2 + y}{v} - \frac{L/2 - y}{v} \qquad \qquad \Longleftrightarrow \qquad y = \frac{v}{2}\Delta t$$

 t_R, t_L : the time that photons reach PMT, *L* : the length of PS y: the position of the muon passing through the 1D detector v: light velocity in PS

The experimental results were well reproduced

[2] T.Sato, Y. Iwamoto, S. Hashimoto et al., Niita, Recent improvements of the Particle and Heavy Ion Transport code System – PHITS version 3.33, J. Nucl. Sci. Technol. DOI:10.1080/00223131.2023.2275736

[3] T. Sato, Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS, PLOS ONE 10(12).

7. Summary and outlook

Summary

The feasibility of muography for the cavity detection was confirmed by using our fabricated prototype detector

Outlook

Estimation of 3D location and size of cavities by measuring muon flux at multiple locations