

KYUSHU UNIVERSITY

C/Be neutron converter design for increasing production amount of medical radioisotopes in accelerator neutron method Kihara Takahiro¹, Kin Tadahiro¹, Mary Alfonse George Mikhail¹, Eto Taisei¹, Masato Asai², Kazuaki Tsukada²

¹Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, ²JAEA

1. Introduction

Accelerator neutron generated by deuterons

→New source for RI production

Feature

- Suitable for mass production
- No need for nuclear reactors
- Large manufacturing facilities

Applications in medical RI production

3σ

Neutron converter

- C Stable
- Be Short lifetime, Neutron-rich • Li Instability, Neutron-rich

Short lifetime : Damage of Blistering

The pressure of the residual hydrogens cause the target to swell.

Purpose

Development of an irradiation system that does not cause blistering

range

while increasing the amount of RIs produced

JAEA tandem experience

Deuteron energy	19.9 [MeV]	
Irradiation time	12.8 [hour]	
Average of electric current	0.574 [µA]	
Be thickness	1.5 [mm]	
C thickness	10 [mm]	

Unfolding : GRAVEL code^[1]

- Experimental values are **nuclide yield** derived from the multiple foil activation method.
- Response function is derived using the **JENDL-5**^[2] cross section.
- Initial estimated neutron spectrum are calculated by **PHITS**^[3].
- This unfolding result was compared with PIHTS result(C/Be

Picture of irradiation equipment

converter) and another experimental result.

[1] Matzke, Manfred. "Unfolding of pulse height spectra: the HEPRO program system", No. PTB-N-19. SCAN-9501291, (1994). [2] O. Iwamoto, N. Iwamoto et al., "Japanese evaluated nuclear data library version 5: JENDL-5", J. Nucl. Sci. Technol. 60(1), (2023) pp. 1-60 [3] T. Sato, Y. Iwamoto, S. Hashimoto et al., "Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02", J. Nucl. Sci. Technol. 55(5-6), (2018), pp. 684-690.

3. Result and Discussion

Converter lifetime

Distribution of incident deuteron follows a normal distribution.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2}) \qquad \begin{array}{l} \mu : \text{Average} \\ \sigma : \text{Straggline} \end{array}$$

range ng

Durability is inversely proportional to the maximum number of deuterons accumulated per unit volume.

D: Durability of converter ρ : Deuterium density per volume ρ_{max} k: constant $\rho_{max,Be} = f(\mu) =$

Thick target neutron Yield : TTNY

$$\frac{\rho_{max,C/Be}}{D_{Be}} = f(\mu - 3\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2})$$
$$\frac{D_{C/Be}}{D_{Be}} = \frac{\rho_{max,Be}}{\rho_{max,C/Be}} = \exp\left(\frac{9}{2}\right) = 90.01$$

C/Be converters are approximately 90 times more durable than stand-alone Be converters

Neutron energy [MeV]

TTNY of JAEA experiment and PHITS simulation

Weaver's results^[4] are stand-alone Be converters with 20 MeV deuteron incident energy. TTNY of PHITS are same flux of default spectrum.

C/Be converters give similar neutron yields to Be converters

[4] K. A. Weaver, J. D. Anderson, H. H. Barschall & J. C. Davis (1973) Neutron Spectra from Deuteron Bombardment of D, Li, Be, and C, Nuclear Science and Engineering, 52:1, 35-45, DOI: 10.13182/NSE73-A23287

4. Conclusion

- We developed C/Be converters that suppress blistering.
- Experiments were conducted in JAEA tandem to evaluate converter performance.
- C/Be converter is approximately 90 times more durable than stand-alone Be converter.
- C/Be converters give similar neutron yields to Be converters