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Nuclear Data Evaluation and Machine Learning
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◆ In recent years, many attempts have been made to use machine learning 
to evaluate nuclear data

Al Hammal et al, Phys. Rev. C, 107, 065501 (2023)

H. Iwamoto, J. Nucl. Sci. Technol. 59, 334 (2022) 

・G-HyND: a hybrid nuclear data estimator 
with Gaussian processes.

・Neural network predictions of inclusive 
electron-nucleus cross sections

☆ We are studying nuclear data generation by combining nuclear reaction models and Gaussian 
process regression to find the optimal value of optical potential for nucleon-nucleus scattering.

・Nuclear data generation by machine learning (I) 
application to angular distributions for nucleon-nucleus scattering

S. Watanabe et al, J. Nucl. Sci. Technol. 59, 1399 (2022)

・機械学習を用いた核子－原子核散乱に対する最適なポテンシャルの予測
日本原子力学会2022年秋の年会大会 2022/9/8 発表者：渡辺証斗
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Framework 1: Nuclear reaction model
◆ Coupled Channel Optical Model

௖ Wave function of scattered wave (radial direction)

: Reaction channel ( ௖ ௖ ௖ )

௖௖ᇲ: Optical potential(Between channels)

We solve coupled channel equations using CCONE            O. Iwamoto et al., Nucl. Data. Sheets 131, 259 (2016)

Optimize the value of  
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S. Kunieda et al, J. Nucl. Sci. Technol. 44, 838-852 (2007) 

(Neutron-Nucleus Scattering)



〇 Gaussian process regression

－ A model that estimates a function
from inputs     and output     variables, and
find the minimum value of the objective  function

〇 Assuming all inputs-outputs follow a Gaussian distribution 
and calculating conditional probabilities given training data

〇 Gaussian process regression has two characteristics

‣ No assumption of function form

－ Even Complicated functions can be estimated.

‣ Estimation results are given by Gaussian distribution
－ Gives the error of the estimate.

Framework 1: Gaussian process regression
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Framework 1: Bayesian optimization

A method for finding the input     that has the minimum value of the function          
based on the estimation results of Gaussian process regression

〇 Determine the potential parameters      to minimize the Objective function    .
:Parameter of optical potential
:Evaluation function 

We use GPyOpt as Library of Gaussian process regression
https://sheffieldml.github.io/GPyOpt/

〇 Bayesian optimization
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〇Objective function describes the deviation between
experimental data and theoretical calculation.
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Result 1: An Example of optimization by machine learning

Estimate the evaluation function about optical parameter by Gaussian process 
regression from the sampling results .
Calculate the evaluation function for , where the large uncertainty and the small 
predicted value. 
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Estimate the evaluation function about optical parameter by Gaussian process 
regression from the sampling results .
Calculate the evaluation function for , where the large uncertainty and the small 
predicted value. 

Result 1: An Example of optimization by machine learning
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Estimate the evaluation function about optical parameter by Gaussian process 
regression from the sampling results .
Calculate the evaluation function for , where the large uncertainty and the small 
predicted value. 

Result 1: An Example of optimization by machine learning
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Estimate the evaluation function about optical parameter by Gaussian process 
regression from the sampling results .
Calculate the evaluation function for , where the large uncertainty and the small 
predicted value. 

optimum

Result 1: An Example of optimization by machine learning
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Result 1: Optimization result

The cross section calculated using obtained in this way is as follows.
Experimental values are reproduced with sufficient accuracy even 
for different target nuclei and incident particles.
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Result 1: Optimization result

Another model. (only to the depth of the central force part of KD03)

The optimal cross sections are slightly different due to different default values for 
the model and other parameters. In any case, experimental values are reproduced 
with sufficient accuracy.
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S. Kunieda et al, J. Nucl. Sci. Technol. 44, 838-852 (2007)  

A. J. Koning and J. P. Delaroche, Nucl. Phys. A. 713, 231-310 (2003)  

The functional form of              is phenomenologically and empirically determined

Next motivation
This method can be used to find the optimal value at an energy for which 
experimental values are available

Conversely, it is not possible to estimate optimal values at energies for 
which there are no experimental values

Using Gaussian process regression, it may be possible to estimate optimal 
values at arbitrary energies without assuming a functional form.



Framework 2: Research Procedure
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Output: 𝑣ோ
଴ (MeV)Input : Energy (MeV)

50.06

49.07

48.815

47.617

1, Collect the list  2, Predict the using ML   

⇒

☆ Predict the energy dependence of by the following process. 
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Result 2:58Ni(n,n) cross section 

◆ Angular distribution of 58Ni(n,n) calculated with CCONE using the estimated value of ோ

Reproduces the experimental data, showing that the sensitivity is large around 50°.
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◆ Gaussian process regression given as training data the optimal value of ோ
that reproduces the experimental data

58Ni(n,n)

CCONE: O. Iwamoto et al., Nucl. Data. Sheets 131, 259 (2016)



Result 2: 58Ni(n,tot) cross section 
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◆ The optimum value of for 58Ni(n,tot) was estimated using the training data



Result 2: 58Ni(n,tot) cross section 

◆ Repeat the same operation with different selections as training data.
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Training data
14MeV+200MeV

𝟐
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Training data
14MeV+160MeV

𝟐

Result 2: 58Ni(n,tot) cross section 

◆ Repeat the same operation with different selections as training data.
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◆ Decrease in ଶ and variance relative to experiment as the number of training data increases
Accuracy improves rapidly for 2-5 data sets, and does not improve beyond 7 data sets

2 training data

Result 2: 58Ni(n,tot) cross section 



22

3 training data

Result 2: 58Ni(n,tot) cross section 
◆ Decrease in ଶ and variance relative to experiment as the number of training data increases

Accuracy improves rapidly for 2-5 data sets, and does not improve beyond 7 data sets
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4 training data

Result 2: 58Ni(n,tot) cross section 
◆ Decrease in ଶ and variance relative to experiment as the number of training data increases

Accuracy improves rapidly for 2-5 data sets, and does not improve beyond 7 data sets
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6 training data

Result 2: 58Ni(n,tot) cross section 
◆ Decrease in ଶ and variance relative to experiment as the number of training data increases

Accuracy improves rapidly for 2-5 data sets, and does not improve beyond 7 data sets
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8 training data

Result 2: 58Ni(n,tot) cross section 
◆ Decrease in ଶ and variance relative to experiment as the number of training data increases

Accuracy improves rapidly for 2-5 data sets, and does not improve beyond 7 data sets
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◆ No matter how the training data was taken, with 8 points, the cross section 
could be reproduced with the same accuracy as S. Kunieda and A. J. Koning

8 training data

Result 2: 58Ni(n,tot) cross section 



Summary & Future work 

〇Combining machine learning and nuclear reaction models to find the 
optimum value of that reproduces the experimental data

〇By using the obtained optimum value as training data, the optimum 
value of at any energy could be obtained

〇By estimating with more than 7 training data, we were able to 
reproduce the cross section with the same accuracy as S. Kunieda and A. 
J. Koning

27

●Future work will also aim to estimate multiple dependencies of a large 
number of parameters


