

方向感度を持つ暗黒物質探索のための 低BG検出器性能評価

2023/11/17 MPGD研究会2023 神戸大学 生井凌太

Introduction

- ▶ 方向に感度を持つ暗黒物質直接探索
- ▶ はくちょう座方向からの暗黒物質(WIMP)による原子核反跳の散乱角を測定

神戸大 生井凌太

絶縁体からの希ガスのラドン(Rn)が 主な放射性バックグラウンド源 →<u>減らしたい</u> Rn放出量の少ない素材を使う

5

2023/11/17

Low Background µPIC(LBGµ-PIC)の開発

基板表面+<mark>内部</mark>のBG対策

- ・コア材をQuartz w/Resinに変更
- ・Solder Resistの面積を従来の1/15に削減
- ・μ-PIC基板と中継基板を一体型にした

LAµ-PICの1/14以下の Rnレートを達成

Sample	214Po rate [count/day]
LAµ-PIC	34.1 ± 4.9
LBGµ-PIC 2020	< 2.3 (90% C.L.)

LBGµ-PIC2020年モデルの問題点

LBGµ-PIC2023年モデル

LBGuPIC2023年モデルの開発

pixelの形成状態を良くするため

- ・電極デザインの見直し
- ・製造工程の見直し

 Sample
 214Po rate [count/day]

 LBGμ-PIC(2020)
 < 2.3 (90% C. L)</td>

 LBGμ-PIC(2023)
 < 1.4 (90% C. L)</td>

等を行って3ケ製作。→性能評価を行う Rnレートは問題なし

アノードの形成状態の確認

- ▶ CNCマシンにUSB顕微鏡を取り付け走査 (~1000cm²/day)
- ▶ anode, cathodeの明るさを取得
- ➤ (anode cathode) / cathode を"brightness"として計算
- →anodeの相対的な明るさを評価

anode cathode

2020年モデルでのgainとbrightnessの比較

gainの高い位置と"brightness"の高い位置に相関がみられる

2023年モデルの解析

2023/11/17

Gain Measurement

Gain Curve測定

gain map

神戸大 生井凌太

・DMrun開始予定@神岡

ADC

▶まとめ ▶2023年モデルLBGµ-PICについて ▶<u>電極の形成状態が良好</u>だった ▶localなgainムラが見られなかった

Rn放出のメカニズム

2023/11/17

Poの測定原理

PINフォトダイオードの電場によってPoイオンが捕集される PINフォトダイオード付近に集まったPoイオンがα崩壊、発生したα線がPINフォトダイオードによって測定される

"brightness" map

GEM搭載後 gain map

CF4 76torr study

2023/11/17