

Position Sensitive Radiation Detector Based on G-GEM with Pulse Counting System for Beta Ray Imaging

Moh Hamdan*, Yuki Mitsuya, Kenji Shimazoe, Hiroyuki Takahashi

*mohhamdan@g.ecc.u-tokyo.ac.jp

Takahashi Lab

November 17, 2023 Japan

MPGD-AMTPC 2023

- 1. Introduction
- 2. Materials and Methods
 - Glass Gas Electron Multipliers (G-GEMs)
 - Charge Readout and Readout Electronics
- 3. Results and Discussion
- 4. Conclusion

Introduction

Beta Ray Imaging

Living Plant Autoradiography

- To observe transport and distribution of chemical substances.
- To observe radioactive contamination of plants after nuclear accident.

The needs for imaging detectors:

- Low energy detection
- Energy resolving capability
- Real time imaging
- Large area imaging
- Insensitivity to visible light

MPGD and Gas Electron Multipliers (GEMs)

- It is fabricated using photolithography process incorporating Kapton foil substrate and Cu electrodes.
- Holes act as proportional counter.

Advantages:

- High charge gain
- Real time imaging
- Large area imaging
- Insensitive to the visible light

[1] F. Sauli, Nucl. Instrum. Methods Phys. Res. A, 805, 2 (2016)[2] https://flc.desy.de/tpc/basics/gem.

Disch

Geiger-Mull

Glass Gas Electron Multipliers (G-GEMs)

GEMs based Detectors

- There are Trade-off between charge gain (t) and spatial resolution (d).
- **G-GEMs** are made using photosensitive etchable glass substrates through photolithography techniques (*t in hundreds*).

Some Substrate Properties

"HOYA Corporation"

	Kapton (Polyimide)	PEG3	PEG3C
Volume Resistivity (Ω.cm)	10 ¹⁸	8.5×10 ¹²	4.5×10 ¹⁴
Bending Stress (MPa)	69	65	150
Young's Modulus (GPa)	18.6	79.7	90.3

G-GEM Substrate:

- High gain in single stage (thick substrate)
- Electrical stability (low volume resistivity)
- Mechanical stability (high bending stress)
- Low outgassing (inorganic substrate)

+ G-GEMs based detectors: Low complexity, power consumption, and cost

Readout System for G-GEMs

Objectives:

- Developing G-GEM based detector for imaging detector, especially for beta ray imaging using pulse counting system.
 - G-GEM characterization
 - Imaging Detector Evaluation
 - Beta Ray Imaging Demonstration

Glass Gas Electron Multipliers (G-GEMs)

		Kapton (Polyimide)	PEG3
	Substrate Thickness <i>t</i> (μm)	50	680
	Hole Diameter <i>d</i> (µm)	55-70	170
P Cr/Cu electrode	Hole Pitch <i>p</i> (μm)	140	280
	Hole Shape	Biconical	Cylindrical
d	Electrodes	Cu (5 um)	Cr (Few hundred Å) /
100 mm		(Cu (2 μm)
	Sensitive Area	100 × 100	100 100
	(mm²)	(Typically)	100×100

 The G-GEM was fabricated in the thick substrate of *PEG3* from Hoya Corporation to achieve high gain with single stage through *photolithography* (wet etching) and UV irradiation methods.

Imaging System

Detector System

• Cathode, single stage G-GEM, strip and pad readout inside chamber system.

Analog Front End

 Charge sensitive preamplifier and Shaping amplifier

Signal Conversion

• ADC

Data Acquisition System

• FPGA and PC

Implemented System

Detector System

G-GEM

•

Detector Structure

- Window and cathode : aluminized Kapton foil ($150 \times 150 \text{ mm}^2$).
 - : single stage PEG3 G-GEM

Position Sensitive Radiation Detector Based on G-GEM with Pulse Counting System

Detector System

• Voltage Difference between G-GEM electrodes:

$$\Delta V_{G-GEM} = V_2 \frac{R_{parallel}}{R_{parallel} + R_2}$$

$$R_{parallel} = R_1 / / (R_p + R_{G-GEM})$$

• Electric field in the drift and induction region:

$$E_{drift} = \frac{V_2 - V_1}{d_1}$$

$$E_{ind} = \frac{V_2 - \Delta V_{G-GEM} - V_{anode}}{d_2}$$

Position Sensitive Radiation Detector Based on G-GEM with Pulse Counting System

Image Reconstruction

Interaction position in x:

$$x_c = \frac{\sum_{i=0}^{N} Q_i x_i}{\sum_{i=0}^{N} Q_i}$$

Interaction position in y: y_c

$$\sum_{i=0}^{N} Q_i$$
$$= \frac{\sum_{i=0}^{N} Q_i y_i}{\sum_{i=0}^{N} Q_i}$$

Typical Waveform of G-GEM

The pulse was based on 90 Sr radiation with activity less than 1 M Bq.

Resistance Between G-GEM Electrodes

- The surface resistance of G-GEM is calculated based on the V-I profile in the ohmic region.
- The resistance between two electrode was 1.23 x $10^8 \Omega$.

Calibration (reference charge) for Effective Gain Estimation:

 The effective gain was estimated based on comparison main peak centroid of ⁵⁵Fe (5.9 keV) and centroid from reference pulses.

Pulse Height Spectra

The effective gain of PEG3 G-GEM achieved an order of 10⁴ with single stage.

Effective Gain

- The ⁵⁵Fe source was weak (global count of about 2 kHz) so that the charge-up effect was considered to be very small.
- Gain decrease was considered coming from high voltage (polarization) causing ion migration (it has not been studied yet)
- The total gain in 180 minutes was considered small enough (around 5%).

Energy Resolution

- The achieved energy resolution increased with increasing gain due to higher signal to noise ratio.
- Variation of avalanche process decreased the energy resolution after ΔV_{G-GEM} of 1439 V.
- PEG3 G-GEM achieved an optimum energy resolution of 18 % at FWHM.

2. Imaging System Evaluation

Time Window

• Fitting the distribution with a Gaussian function yielded an FWHM of 12407 ns.

Results and Discussion

MPGD-AMTPC 2023

• The linearity of count over time showed the stability of counting.

3. Beta Ray Imaging Demonstration

Energy Resolving Capability (Potential)

- The parameters was set at gain of 10000, drift field of 0.2 kV/cm, and induction field of 2.56 kV/cm.
- The image was weighted by the ADC value and enhanced by gaussian filter function ($\sigma = 1$).
- The different profile with selected energy range showed a potential for conducting imaging with resolving energy.

- The study developed Gas Electron Multiplier (G-GEM) detector with a strip readout integrated with the pulse counting readout electronics for beta ray imaging.
- The PEG3 G-GEM exhibited promising characteristics, achieving a high effective gain of 10⁴ with single stage.
- Successful detection of low-energy X-rays from a ⁵⁵Fe source was demonstrated, showing an energy resolution of 18% at FWHM.
- The imaging reconstruction effectively captured the energy distribution from beta rays limited by factors such as the spread of high-energy beta rays and the system's drift gap.

Thank You For Listening