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Influence of High Pressure Rinsing

Prior to Mid-T Heat Treatment

Rezvan Ghanbari, on behalf of SRF R&D and DESY Nanolab teams
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Tuning the interstitial oxygen concentration of mid-T heat treated cavities
By the number of HPR cycles before the heat treatment

Mid-T heat treatment
(3-20 h @ 200-400°C in UHV)

improves Q, and changes dQ,/dE,,

Oxygen concentration is the key

parameter for mid-T heat treatment

HPR affects pentoxide growth
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Tuning the interstitial oxygen concentration of mid-T heat treated cavities
By the number of HPR cycles before the heat treatment

e  Mid-T heat treatment
(3-20 h @ 200-400°C in UHV)

improves Q, and changes dQ,/dE,,

« Oxygen concentration is the key

parameter for mid-T heat treatment

» HPR affects pentoxide growth

Higher number of HPR cycles
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Page 3



Steps to study the influence of HPR on oxide layers

To av0|d Surface 0X|dat|0n _
by air during transportation ‘

.
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Steps to study the influence of HPR on oxide layers

To av0|d Surface 0X|dat|0n _
by air during transportation ‘

Reference
0 HPR cycle
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Steps to study the influence of HPR on oxide layers

To av0|d Surface 0X|dat|0n _
by air during transportation ‘

Reference
0 HPR cycle

To identify and measure
thickness of different
oxide layers

XPS measurements
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Steps to study the influence of HPR on oxide layers

To avoid surface oxidation
by air during transportation

To identify and measure
thickness of different
oxide layers

Mid-T heat treatment was XPS measurements

done in the same furnace and

the same run at 300 °C for 3h To reset the oxide layers on the surfaces

by removing saturated oxide layers and

\ regrow oxide layers with HPR
Mid-T heat treatment
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Steps to study the influence of HPR on oxide layers

To avoid surface oxidation
by air during transportation

XFEL-recipe polished samples

-

Store under high pure ethanol

-

Reference
0 HPR cycle

Standard recipe
6 HPR cycles

Mid-T heat treatment was
done in the same furnace and
the same run at 300 °C for 3h

Interstitial oxygen concentration
after Mid-T heat treatment could
depend on number of HPR cycles

-

To identify and measure
thickness of different
oxide layers

Store under high pure ethanol

-

XPS measurements

-

HF acid rinsing and repeat HPR step

-

Mid-T heat treatment

To reset the oxide layers on the surfaces
by removing saturated oxide layers and
regrow oxide layers with HPR

SIMS & XPS measurements




X-ray photoelectron spectroscopy (XPS) to probe composition

« XPS measurements are done with the same voltage and condition
» penetrate the first 5 nm of the sample surfaces

» Deconvolute the spectra with known oxide layer structure
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X-ray photoelectron spectroscopy (XPS) to probe composition

XPS measurements are done with the same voltage and condition

penetrate the first 5 nm of the sample surfaces

Deconvolute the spectra with known oxide layer structure

Arbitrall'y Units .

] Nb 3d core level

212 ' ' ' 208
Binding Energy (eV)
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X-ray photoelectron spectroscopy (XPS) to probe composition

XPS measurements are done with the same voltage and condition

penetrate the first 5 nm of the sample surfaces

Deconvolute the spectra with known oxide layer structure

Arbitrall'y Units .

Nb,Os

] Nb 3d core level

Nb
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X-ray photoelectron spectroscopy (XPS) to probe composition

XPS measurements are done with the same voltage and condition

penetrate the first 5 nm of the sample surfaces

Deconvolute the spectra with known oxide layer structure

Arbitrall'y Units .

1 Nb 3d core level

Nb205
.

Binding Energy (eV)
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X-ray photoelectron spectroscopy (XPS) to probe composition

XPS measurements are done with the same voltage and condition

penetrate the first 5 nm of the sample surfaces

Deconvolute the spectra with known oxide layer structure

Arbitrary Units

1 Nb 3d core level

Nb2056
»

Binding Energy (eV)
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X-ray photoelectron spectroscopy (XPS) to probe composition

« XPS measurements are done with the same voltage and condition
» penetrate the first 5 nm of the sample surfaces

» Deconvolute the spectra with known oxide layer structure

Nb,Os

1 Nb 3d core level

. Arbitrafy Units .
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Extensive HPR grows thicker and mid-T heat treatment causes thinner pentoxide

X-Ray Photoelectron Spectroscopy (XPS)
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Extensive HPR grows thicker and mid-T heat treatment causes thinner pentoxide
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0 HPR cycle

X-Ray Photoelectron Spectroscopy (XPS)
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Extensive HPR grows thicker and mid-T heat treatment causes thinner pentoxide
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X-Ray Photoelectron Spectroscopy (XPS)

Mid-T heat treatment

0 HPR cycle 0 HPR cycle
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HPR prior to mid-T heat treatment changes the oxygen concentration
after heating

« Samples with HPR cycles have different oxygen

distribution compared to no-HPR sample

Secondary lon Mass Spectrometry (SIMS)
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HPR prior to mid-T heat treatment changes the oxygen concentration
after heating

« Samples with HPR cycles have different oxygen

distribution compared to no-HPR sample
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Conclusions

« Higher number of HPR cycles grows thicker pentoxide layer

« Higher number of HPR cycles prior to mid-T heat treatment causes different oxygen distribution

« How does the performance of a cavity change with higher number of HPR prior to mid-T heat treatment?
» Is the increased oxygen concentration enough to alter the performance? ,

» Is more oxygen beneficial or detrimental?

Y
.

Cavity 1DEO7 =18 HPR cycles=» mid-T heat treatment - RF test Is running
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Thanks for your attention

Any questions?

Rezvan Ghanbari

Institute of Experimental Physics
E-Mail: rezvan.ghanbari@desy.de
Phone: (+49) 040-8998-4321
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X-Ray Photoelectron Spectroscopy (XPS)
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X-Ray Photoelectron Spectroscopy (XPS)
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Mid-T heat treatment
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Secondary lon Mass Spectrometry (SIMS)
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