Influence of High Pressure Rinsing

Prior to Mid-T Heat Treatment

Rezvan Ghanbari, on behalf of SRF R&D and DESY Nanolab teams

Tuning the interstitial oxygen concentration of mid-T heat treated cavities

By the number of HPR cycles before the heat treatment

- Mid-T heat treatment (3-20 h @ 200-400°C in UHV) improves Q_0 and changes dQ_0/dE_{acc}
- Oxygen concentration is the key parameter for mid-T heat treatment
- HPR affects pentoxide growth

Tuning the interstitial oxygen concentration of mid-T heat treated cavities

By the number of HPR cycles before the heat treatment

- XPS measurements are done with the same voltage and condition
- penetrate **the first 5 nm** of the sample surfaces
- Deconvolute the spectra with known oxide layer structure

- XPS measurements are done with the same voltage and condition
- penetrate **the first 5 nm** of the sample surfaces
- Deconvolute the spectra with known oxide layer structure

- XPS measurements are done with the same voltage and condition
- penetrate **the first 5 nm** of the sample surfaces
- Deconvolute the spectra with known oxide layer structure

- XPS measurements are done with the same voltage and condition
- penetrate **the first 5 nm** of the sample surfaces
- Deconvolute the spectra with known oxide layer structure

- XPS measurements are done with the same voltage and condition
- penetrate **the first 5 nm** of the sample surfaces
- Deconvolute the spectra with known oxide layer structure

- XPS measurements are done with the same voltage and condition
- penetrate **the first 5 nm** of the sample surfaces
- Deconvolute the spectra with known oxide layer structure

Extensive HPR grows thicker and mid-T heat treatment causes thinner pentoxide

X-Ray Photoelectron Spectroscopy (XPS)

Extensive HPR grows thicker and mid-T heat treatment causes thinner pentoxide

	X-Ray Photoelectron Spectroscopy (XPS)						
	0 HPR cycle	6 HPR cycles	18 HPR cycles	s			
<i>Nb</i> ₂ <i>0</i> ₅	~13.0	~17.0	~40.9				
Other oxides Nb	~3.7	~3.6	~4.8				

The first **5** *nm* of the surface

Extensive HPR grows thicker and mid-T heat treatment causes thinner pentoxide

	X-Ray Photoelectron Spectroscopy (XPS)								
	0 HPR cycle	6 HPR cycles	18 HPR cycles	0 HPR cycle	6 HPR cycles	18 HPR cycles			
				Mi	Mid-T heat treatment				
<i>Nb</i> ₂ <i>O</i> ₅	~13.0	~17.0	~40.9	~10.9	~14.0	~15.0			
Other oxides Nh	~3.7	~3.6	~4.8	~3.2	~4.5	~5.8			

The first **5** *nm* of the surface

0

0)

Page 17

HPR prior to mid-T heat treatment changes the oxygen concentration after heating

• Samples with HPR cycles have different oxygen

distribution compared to no-HPR sample

HPR prior to mid-T heat treatment changes the oxygen concentration after heating

• Samples with HPR cycles have different oxygen

distribution compared to no-HPR sample

Conclusions

- Higher number of HPR cycles grows thicker pentoxide layer
- Higher number of HPR cycles prior to mid-T heat treatment causes different oxygen distribution

- How does the performance of a cavity change with higher number of HPR prior to mid-T heat treatment?
- Is the increased oxygen concentration enough to alter the performance?
- Is more oxygen beneficial or detrimental?

Thanks for your attention

Any questions?

Rezvan Ghanbari Institute of Experimental Physics E-Mail: rezvan.ghanbari@desy.de Phone: (+49) 040-8998-4321 I would like to express my thanks to:

Dangwal Pandey, M. Kohantorabi, and H. Noei for their support of XPS measurements.

S. Nouri Shirazi and T. Fladung for SIMS measurements. Nicoly Krupka, D. Reschke, L. Steder, and my MSL colleagues for HPRs and RF performance tests. M. Wenskat and W. Hillert for their support.

BACKUP

Mid-T heat treatment

