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I-Introduction
Systematics, but what kind?

→ Noise in measurements : statistical and systematic noise. 
→ Statistical noise has its origin in random processes
→ Systematic noise is caused by factors that consistently influence the 

measurements in a particular, predictable direction. 
→ Unexpected systematic errors can occur if the factors are not well known 

What can we do with such unpredicted, hard to characterize 
systematics? Is it possible to go beyond these limitations?

→ Example of systematic 
noise : Periodic systematics 
parasitizing TESS (Transiting 
Exoplanet Survey Satellite) 
data of rotating stars.

→ In order to predict a 
star’s rotation period, the 
autocorrelation power 
spectrum of its measured 
light curve is computed.

II - Tracking systematics : 
a Classification Problem

→ TESS has a 14 days rotation period around the earth and a 27 days 
segmented observation strategy

→ These systematics are directly seen on figure 1. as well as their aliases.

→LiteBIRD in this story : while the scientific objective is very different, the 
question of the mission’s observation strategy and the impact of systematics 
on the measured data is essential. 
The LiteBIRD simulation framework (https://github.com/litebird/litebird_sim) 
could provide Time-Ordered Data (TOD) and maps taking into account realistic 
noise and different scanning strategies to test different systematics 
characterization methods.

→ Identifying and characterizing a systematic error in data can be seen as a 
classification problem. 
→ Classification is all about balancing discriminativeness and invariance
→Very general way to formulate this problem : Insights from various 
approaches to this problem can help
→ Key problem: finding an appropriate space to represent the data in.

The following examples explore possible methodologies that 
use the strengths of computer vision to solve classification 
problems.

III - Augment dimensionality to better reduce it
(trust me, it works)

Going back to the TESS example, one solution explored to go beyond 
the limitations set by the systematics was to  :

→Transform the TOD into a time-period representation using the 
Continuous Wavelet Transform (CWT).

→Apply a Convolutional Neural Network (CNN) to the obtained 2D 
“image”, having previously trained the CNN on realistic simulations.

→ The CNN performs better at this task than traditional methods
→ Recognition of Morphological properties : exactly what 
computer vision excels at

Figure 2. Time-Period representation of 
the TOD, from its CWT

Figure 3. CNN recoveries of star periods

Figure 1. ACF recoveries of star periods

Gravitational Wave data analysis : classification of transients
→ Hunt for transients : noise or relevant data?
→ Different approaches, some ML based some not

Figure 4. Spectrograms of transients 
typically found in aLIGO data

IV - Identify and correct Outliers in data : 
Highlight Invariance to allow Discrimination
→ Data with high dimensionality :  discriminativeness is strongly reduced
→ To mitigate this, dimension-reduction methods such as t-distributed 

Stochastic Neighbor Embedding (t-SNE) or ML-based Self Organizing Maps 
can be used to plot data points that have very close characteristics as 
neighbors in a 2D map. This can be used to identify and correct outliers in 
measurements, such as in this example of photometric redshift 
measurements of galaxies.

→ Whatever the dimension, we can think of ways to transform the data 
we’re working with to an appropriately classifying 2D space

→ One issue lies in the interpretability as well as the adaptability to 
unexpected systematics of the methods shown here.

→ Do this with algorithms that show what they actually discriminate 
(U-net in fig 7). From there, we could even think about using such “blind” 
discrimination to define new classes of unexpected systematics.

Figure 6. t-SNE maps of “neighbour” galaxies, based on their photometric measurements

V - Conclusion
→ The characterization of systematics, seen as a classification problem, can 
be successfully investigated via the approach of computer vision. 
→ These snapshots from different fields, amongst many others, will be 
sources of inspiration for my future work on LiteBIRD systematics.
→ Bridging the gap between the particularities of this experiment and the 
other showcased here is a challenging yet rewarding challenge I am very 
excited to be working on for the next 3 years.

Figure 5. Classification procedures for the three different 
methods used in this study. 
(a) PCAT applies principal component analysis to all 
transients detected in a stretch of data and then applies a 
machine learning classifier to the principal component 
coefficients. 
(b) PC-LIB uses a combination of principal component 
analysis and Bayesian model selection to determine the 
glitch type. 
(c) WDF-ML applies a machine learning classifier to 
wavelet coefficients obtained by applying a wavelet 
transform to the transients in the data.
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