The study on the radiation hardness of CIGS semiconductor

K. Itabashi¹, T. Ishobe², M. Miyahara^{1,3}, J. Nishinaga⁴, H. Okumura⁵, M. Togawa^{1,3}, 1. International Center for Quantum-field Measurement Systems for Studies of the Universe and Particles¹, Institute of Physical and Chemical Research², Institute of Particle and Nuclear Studies³, National Institute of Advanced Industrial Science and Technology⁴, University of Tsukuba Faculty of Pure and Applied Science⁵

A CIGS is an alloy semiconductor of $CuInSe_2$ and $CuGaSe_2$.

- Energy gap : 1.01 1.64 eV (depends on fraction of In and Ga)
- Absorption wavelength : 300 1200 nm
- P-type semiconductor
- High radiation resistance
- Good light sensitivity

CIGS has recovered mechanism by heat annealing

Heated ionic atoms restored defective lattices \rightarrow Expected to recover leakage current and collected charged decreasing by radiation damage.

4. Heavy ion irradiation experiment at HIMAC

(+)

• Continuously recovery (130°C annealing)

-Preliminary-

• strong temperature dependence

Recovered leakage current by 130°C annealing

→ Decreasing defect level

5. Proton irradiation experiment at CYRIC

We irradiated 70 MeV proton to CIGS solar cells ($7 \times 10^{15} \text{ MeV} \cdot n_{eq}$) at Cyclotron and Radioisotope Center (CYRIC) in Tohoku University.

Irradiated samples

For study of the annealing temperature and time dependence of current, we measured shortcircuit current (J_{sc}) and conversion efficiency (η) with 1 sunlight.

Annealing time [min]

emp. 90 Jsc (at 0V)

Temp. 110 Jsc (at 0V)

Temp. 130 Jsc (at 0V)

JV-curve

IV curve of CIGS solar cells
J [mA/cm²] decreased due to proton irradiation J_{sc}(0V) : 35 → 20 mA/cm²
Recovered J by thermal annealing (2.5 h) at 130°C J_{sc}(0V) : 20 → 28 mA/cm²

Heating temperatures (90, 110, 130°C)

- 130°C annealing : $J_{sc} = 0.58 \rightarrow 0.83$ (1h)
- 90°C annealing : $J_{sc} = 0.51 \rightarrow 0.56$ (1h)

Recovery time is greatly depending on heating temperature.

These results are consistent with HIMAC experimental results

<u>6. Summary</u>

Value

0.8

LHC at CERN plans major upgrades for the high energy and luminosity.

• The development of detectors with high radiation tolerance (70 MGy) is necessary. CIGS has the ability to recover from the radiation damage by annealing.

• high radiation tolerance semiconductor

We performed heavy ion irradiation experiment for study the thermal annealing at HIMAC.

• CIGS recovered the radiation damage in terms of leakage current and signal output by the heat annealing at 130 °C.

For study of the annealing temperature and time dependence of J_{sc} , CIGS solar cells were irradiated with 70 MeV proton (7 × 10¹⁵ MeV · n_{eq}) at CYRIC.

• We observed strong temperature difference of J_{sc} recovery speed,

and this results is consistent with recovery speed of collected charge in HIMAC experiment.

7. Future research plan for CIGS

Toward the practical application of CIGS detectors

- Development of thick depletion layers for single-charged particles detection
- Development of the CIGS detector as a pixel and strip type.

Reference

[1] G. Lindstrom Nucl. Phys. And Meth. In Phys. Rese. A 512 (2003) 30-43.