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Abstract

We investigate a generic source of stochastic gravitational
wave background (SGWB) due to the parametric resonance
of oscillating scalar fields in the early Universe. By system-
atically analyzing benchmark models using lattice simula-
tion and considering a wide range of parameter space, we
demonstrate that such a scenario can lead to detectable
signals in GW detectors over a broad frequency range
and potentially address the recent findings by NANOGrav,
etc. Furthermore, these models are found to naturally
yield ultra-light dark matter candidates or dark radiation de-
tectable by CMB observatories.

1. Introduction

❐ The discovery of Gravitational Waves (GWs) by LIGO
in 2015 and expedited developments in the science and
technology of GW detectors over a multitude of frequency
ranges heralded a new era of observational Cosmology.

❐ In the absence of other direct observables, GWs are the
only reliable signatures to shed light on the pre-BBN pri-
mordial dark ages.

❐ Null results in most dark matter searches, calling for a
newer avenue for looking into their potential sources and
signatures.

❐ We explore the GWs sourced by the large inhomo-
geneities due to excitations by a time-dependent coher-
ently oscillating scalar.

❐ We study the consequences when such scalars can nat-
urally yield ultra-light dark matter candidates or dark ra-
diation detectable by CMB observatories.

2. Gravitational Waves from Scalar Condensate
fragmentation: A recapitulation

❑ Preheating after inflation is a usual example of when
GWs are generated from coherent scalar fragmentation.
These GWs signals:
➔ Add complementary channel to inflationary GWs.
➔ Observed frequency depends on the typical Hubble

scale (typically high frequency): fpeak ∝
√

H ∼ √
m →

Not observable by traditional detectors.
❑ If the scalar field mass is not constrained from CMB ob-

servables (spectator fields), we can tune the frequency
depending on the mass of the spectator. [2, 3]

Figure 1: Classical inhomogeneities due to coherent scalar
fragmentation source GWs

3. GWs production, quantitatively

❐ The Models:
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❐ The EoMs
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❐ Gravitational waves being transverse and traceless (TT)
part of the metric perturbation in the synchronous gauge
sourced by TT-part of the anisotropic stress of the scalar
field (Πij = [∂ϕi∂ϕj]

TT)
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❒ The GW energy density is given by

ρGW(t) =
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4

⟨ḣij(x, t)ḣij(x, t)⟩V , (9)

❐ The spectrum of the energy density of GWs (per logarith-
mic momentum interval) observable today:
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❐ We take the universe to be radiation-dominated.

4. Results
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Figure 2: GWs over many decades of Frequency from
coherently oscillating scalars

Model mϕ (eV) g σ (eV) λχ νGW(Hz) ΩGW
A 10−13 10−75 - - 10−9 10−10

A∗ 108 10−36 - - 100 10−9

B 10−13 - 10−52 10−75 10−9 10−9

B∗ 10−2 - 10−30 10−53 10−3 10−9

B∗ 108 - 10−10 10−33 102 10−9

λϕ g σ (eV) λχ νGW(Hz) ΩGW
C 10−35 - - - 100 10−11.5

D 10−79 10−79 - - 10−9 10−12

Table 1: Example model parameters leading to GW pro-
duction with frequencies in observationally relevant range,
from NANOGrav to LISA to LIGO.

5. Dark matter and Dark Radiation

❐ The relic abundance of ϕ particles:
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❐ GWs contribution (amplitude ≈ 10−9) to new relativistic
degrees of freedom is negligible.
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❐ The ‘massless’ components can act as non-thermally
produced dark radiation and will lead to additional con-
tributions to ∆Neff

∆Neff =
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6. Conclusion and outlook

❐ Simple ‘renormalizable’ scalar potentials can source
detectable GWs across many decades of frequen-
cies.

❐ Complementary phenomenology: DM candidate with
signals in the NANOGrav. [4].

❐ Relic scalar radiation contributes to CMB Neff ob-
servable.

❐ Possibility of early matter domination driven by the ϕ-
condensate can affect the GW signals and DM struc-
ture formation.

References

[1] Y. Cui, P. Saha, and E. I. Sfakianakis, “Gravitational
Wave Symphony from Oscillating Spectator Scalar
Fields,” arXiv:2310.13060 [hep-ph].

[2] R. Easther, J. T. Giblin, Jr., and E. A. Lim, “Gravitational
Wave Production At The End Of Inflation,” Phys. Rev.
Lett. 99 (2007) 221301, arXiv:astro-ph/0612294.

[3] N. Kitajima, J. Soda, and Y. Urakawa, “Gravitational
wave forest from string axiverse,” JCAP 10 (2018) 008,
arXiv:1807.07037 [astro-ph.CO].

[4] NANOGrav Collaboration, A. Afzal et al., “The
NANOGrav 15 yr Data Set: Search for Signals from
New Physics,” Astrophys. J. Lett. 951 no. 1, (2023) L11,
arXiv:2306.16219 [astro-ph.HE].

QUPosium2023,The 2nd International Symposium on Quantum-field Measurement Systems for Studies of the Universe, Particles, and Other Applications


