

Example 2 Control Control

Principle of Anomaly Detection

- Active field of Data Science Involve state of the art Machine Learning algorithms
 - Many applications in **various scientific field** as well as in everyday life
- Example of anomalies

		time	variable	
	1	0	19.3	
80000		1	20.3	

New silicon central detector for ATLAS (ITk)

– Upgrade toward HL-LHC More <u>luminosity</u> => more <u>challenges</u>

New silicon central detector : ITk High precision particle tracking and high <u>radiation</u> <u>hardness</u>

- Pixel module production in Japan
 <u>2800 pixel modules</u> produced in Japan for ITk
 - Each component must be carefully assembled and

checked <u>Mass production</u> starts in 2024 Flexible PCB (Yamashita Mat.) <u>Sensor Tile (HPK)</u> <u>FE Chip (TSMC)</u> Schematic of a ITk pixel module

Anomaly Detection and Quality Control

- Important part of the production chain
 Make sure that every components of the detector is in perfect working condition
 - Must accommodate a rate of **8 modules per day** during mass production
- Visual Inspection at every step
 Search for visible defect on each component at

Algorithms

– Unsupervised learning

Objective: identify <u>rare and new</u> types of defects

Unsupervised deep Neural Network (Auto-Encoder) => Identify <u>anomalous area</u> within a image

Filtering algorithm based on DBSCAN clustering => Isolate and highlight <u>major defect candidates</u> **Unsupervised workflow is fully functional**

each step of production

Manual Visual inspection by human operators

Photo of the imaging setup

=> Time consuming (8~10 min)
=> Unreliable

<u>Computer Visual Inspection</u> => Fast (<1 min) => Reliable

<u>Anomaly Detection</u> using <u>Computer Vision algorithms</u> Supervised learning
 Objective: Categorize known and recurrent defect
 Deep Computer Vision model inspired by Detectron2
 => Identify common defect categories
 Integration with the unsupervised tool

Data preparation and training ongoing

Results

Unsupervised identification example
 Training using ~50 <u>high resolution images of Flex PCB</u>
 => Use data augmentation techniques

Test on image where a <u>new defect</u> have been found => single occurrence anomaly

Next steps

Near future schedule

First demonstration QC software including ML (only unsupervised) Full test of supervised algorithm

Final version of QC software including ML

The anomaly have been properly identified

Time required to process the <u>full image</u> : <10s => Fast inference using CPU only *(both supervised and unsupervised)* Deployment at production site in Japan

Global deployment of the ML tool for ITk production (To be confirmed)

Long term plan

Preparation of a <u>generic Anomaly Detection tool</u> for **Visual Inspection** of detector components

Aiming to reach <u>beyond ATLAS and other LHC</u> <u>experiments</u>

Dec 22

Jan (end)

FY2024

2024