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Strong CP Problem

✓ Experimentally, QCD is known to preserve CP symmetry very well.

✓ CP violating transitions in the SM are caused by CP violation in the
weak interaction (i.e. by the CKM phase).

Figure from : https://en.wikipedia.org/wiki/Kaon

 https://en.wikipedia.org/wiki/Kaon
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Strong CP Problem

CP conservation is not automatically guaranteed in QCD .

✓ QCD has its own CP-voilating parameter : θ

LQCD = −1

4
GaµνG

aµν +
g2s

32π2
θGaµνG̃

aµν +

Nf∑
i

q̄i(i /D −m)qi

[positive quark masses : m > 0]

✓ θ-term is not invariant under P and CP transformation

g2s
32π2

θGaµνG̃
aµν CP−−−−−→−

g2s
32π2

θGaµνG̃
aµν

✓ θ-term is highly constrained experimentally.

np

π−
Null observation of the neutron EDM:

dn/e < 10−26 cm @ 90%CL

[PRL 124, 081803 (2020)].

dn/e ∼ 10−15θ cm [’79 Crewther, Veccia, Veneziano, Witten]
→ θ < 10−11 why so small ? = strong CP problem !
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Peccei-Quinn Mechanism and Axion

How to solve the strong CP problem?

If massless colored fermions exist, the strong CP problem goes away!
[’77, Peccei-Quinn]

Massless colored PQ fermion : ψL,R = PL,Rψ

L = ψ̄Li /DψL + ψ̄Ri /DψR , (Dµ = ∂µ − igsGaµta) .

A chiral U(1) rotation,

ψL → eiαψL , ψR → ψR ,

shifts θ → θ + α through the chiral anomaly.

θ can be set to 0 !

[ Symmetry under the chiral U(1) rotation = PQ symmetry ]

No such a massless colored fermions in reality... How to reconcile ?
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Peccei-Quinn Mechanism and Axion

Make the PQ symmetry broken spontaneously !

✓ A complex field ϕ rotates under the PQ symmetry :

ϕ→ eiϕϕ , ψL → e−iαψL , ψR → ψR

✓ The chiral U(1) symmetry is spontaneously broken by ⟨ϕ⟩ = v.

The colored fermions obtain mass through:

L = L(ϕ) + ψ̄Li /DψL + ψ̄Ri /DψR + yϕψ̄RψL + h.c.

L(ϕ) = ∂µϕ
∗∂µϕ− V (ϕ) ← symmetric under the U(1) rotation

Colored fermions obtain mass,

mψ = yv

We can make the new colored fermions arbitrarily heavy!
· · ·Any low-energy implications?
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Peccei-Quinn Mechanism and Axion

Spontaneous breaking is associated with a Goldstone mode : Axion !
[’78, Weinberg, ’78 Wilczek ]

Axion = phase direction of ϕ :

ϕ(x)|axion =
fa√
2
exp

[
i
a(x)

fa

]
, fa =

√
2× v (axion decay constant)

Axion couples to QCD and QED through :

Leff =
g2s

32π2

a

fa
GaµνG̃

aµν +
Cee

2

32π2

a

fa
F aµν F̃

aµν

Axion

Reϕ

ImϕV (ϕ)
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Peccei-Quinn Mechanism and Axion

Spontaneous breaking is associated with a Goldstone mode : Axion !
[’78, Weinberg, ’78 Wilczek ]

Axion = phase direction of ϕ :

ϕ(x)|axion =
fa√
2
exp

[
i
a(x)

fa

]
, fa =

√
2× v (axion decay constant)

Axion couples to QCD and QED through :

Leff =
g2s

32π2

a

fa
GaµνG̃

aµν +
Cee

2

32π2

a

fa
F aµν F̃

aµν

a

fa

V (a)

−2π −1π 0π 1π 2π

∼ f2
πm

2
π Axion obtains non-trivial potential

due to QCD dynamics through the
chiral anomaly
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Peccei-Quinn Mechanism and Axion

✓ The lower limit on the axion decay constant:

fa ≳ 108−9 GeV , (supernovae/red-giant cooling)

https://cajohare.github.io/AxionLimits/docs/ap.html

✓ Axion is very light:

ma = O(1)µeV ×
(
1012 GeV

fa

)
✓ Axion is a good candidate for dark matter:

Ωah
2 = 0.18× θ2init

(
fa

1012 GeV

)1.19(
ΛQCD

400MeV

)
,

from the coherent oscillation of the axion (c.f. ΩDMh
2 ≃ 0.12).

[e.g. 1301.1123 Kawasaki, Nakayama]

The PQ mechanism not only solves the strong CP problem but also provides
a good candidate for dark matter!

https://cajohare.github.io/AxionLimits/docs/ap.html
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Cosmic String

U(1) symmetry breaking is associated with cosmic strings !

✓ Trivial vacuum configuration of the broken phase
= phase in ϕ is aligned to the same direction [e.g. (Reϕ, Imϕ) = (v, 0)]

Reϕ

ImϕV (ϕ)

x

y

✓ Non-trivial vacuum configuration due to the finite causality length
= phase of ϕ depends on the spatial direction [e.g. (cosφ, sinφ)]

Reϕ

ImϕV (ϕ)

x

y

U(1) symmetry is restored at the core of the configuration!
→ energy concentration at the core = topological defect
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Cosmic String

Energy concentrations connected in one dimension = Cosmic String

Reϕ

ImϕV (ϕ)

rotation of ϕ⃗
= winding number

✓ The string tension (=mass per unit length)

µstr ∼ πf2
a log

fa
ℓcorr

, ℓcorr ∼ distance of the stirngs

✓ Long strings are stable due to the winding of the ϕ phase
( = topological charge, π1[U(1)] = Z)
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Cosmological Evolution of Axionic Cosmic String

Assume the PQ symmetry breaking takes place after inflation at T ∼ fa.

✓ On average, O(10− 100) number of cosmic strings are
generated per Hubble volume, V ∼ H−3

✓ Long strings keep producing lots of string loops

✓ Loops (= 0 net topological charge) disappear by emitting axions
[ lifetime ∼ H−1 at the production time ]

✓ Energy density of the string network keeps being subdominant

ρstr ∼ µ2
strH

2 ∼ f2
a

M2
Pl

× T 4 ≪ ρtot ∼ T 4 ,

with the correlation length between strings, ℓcorr ∼ 0.3H−1

Axion Emission Axion Emission Axion Emission Axion Emission

Curly long string Loop creation Smooth long string
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Fermion Zero Mode

✓ The colored fermions in the PQ mechanism become heavy (ψ = yv) via

L = L(ϕ) + ϕ+ ψ̄Li /DψL + ψ̄Ri /DψR + yϕψ̄RψL + h.c. .

✓ The massive fermions decay into the SM quarks via,

OD = yDHSMψ̄RqL + h.c.,

qL

HSM

ψ

with the decay rate,

ΓD =
|yD|2

16π
mψ
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Fermion Zero Mode

✓ PQ symmetry is restored at the core of the string !

profile function ϕ(x) = vh(ρ)einφ

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

ρ
φ

✓ Fermions do not have masses at the string core.

The existence of fermionic zero modes propagating along the string at the
speed of light!

[’81 Weinberg, ’81 Jakiew&Rossi]
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Fermion Zero Mode

Dirac equation around cosmic string along the z-axis,[
iγµ∂µ −mψh(ρ)

(
einφPL + e−inφPR

)]
ψ = 0

The transverse configuration:

iγ1 (∂1 + i(iγ1γ2)∂2
)
ψL = mψh(ρ)e

−iφψR ,

iγ1 (∂1 + i(iγ1γ2)∂2
)
ψR = mψh(ρ)e

iφψL .

Noting ∂1 ± i∂2 = e±iφ(∂ρ ± iρ−1∂φ), φ–independent solution :

ψ0(x, y) = Nη exp

(
−
∫ ρ

0

mψh(ρ
′)dρ′

)
, η = (0, 1, i, 0)T

2D Chirality : γ(xy)
5 = iγ1γ2, γ

(zt)
5 = γ0γ3

γ
(xy)
5 ψ0

L = −ψ0
L , γ

(xy)
5 ψ0

R = +ψ0
R , γ

(zt)
5 ψ0 = +ψ0

Zero mode is localized around the string with ∼ e−mψρ
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Fermion Zero Mode

“Massless” propagation:

ψ0(t, x, y, z) = α(t, z)× ψ0(x, y)

The longitudinal part of Dirac equation:

(γ0∂0 + γ3∂3)α(t, z)η = 0 , γ
(zt)
5 η = +η , → (∂0 + ∂3)α(t, z) = 0

✓ The zero-mode propagation is at the speed of light!

α(t, z) = α(t− z)

✓ Only right-movers exist [no α(t+ z) mode]!

✓ Anti-particles are also right-movers:

Antiparticle : ψ0c = iγ2ψ0∗ → γ
(zt)
5 ψ0c = ψ0c

✓ Left-movers appear along the string with n = −1

The fermion zero mode propagates at the speed of light but is one-way!
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Fermion Zero Mode

The fermion zero mode propagates at the speed of light but is one-way!

ψ, ψc

ψ, ψc

String with n = 1 String with n = −1

Fermion Zero modes are localized around the string
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Chiral Superconductivity

✓ PQ fermions are also charged under U(1)Y of the SM and hence QED
∵ PQ fermions couple to the SM quarks via,

OD = yDHSMψ̄RqL + h.c.,

Zero modes of PQ fermions on the string can carry QED and QCD current!

Apply an electric field Ez along the string in z-direction with n = 1

Ez

ψ ψc
×

Particle is accelerated in z > 0 direction

Antiparticle is accelerated in z < 0 direction

Only right-movers exist
= Only particles get accelerated !
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Chiral Superconductivity

✓ Particles obtain Fermi momentum εF = qψEZt [’85, Witten]

pψ pψεF

t = 0 t > 0

✓ QED current on the string [’85, Witten]

J =
1

2π
NcqψεF =

1

2π
Ncq

2
ψEzt

✓ QED current also has QED charge [’85, Callan&Harvey]

Q

Lstring
= J =

1

2π
Ncq

2
ψEzt

✓ QED current/charge remain even after Ez turned off

A current keeps flowing along the string = superconductivity!
[ Strings also obtain QCD current similarly ]
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Vorton : Stable Remnant?

In the early Universe, the electric field is 0 on average.

✓ Local/temporal electric field may induce superconductive current.

✓ Loop productions in that region/time produce QED /QCD charged loops!

What happens to the charged loops?

A string loop with QED charge Q with a length Lloop:

Q =
1

2π
NcqψεFLloop , EQ =

1

4π
Ncε

2
FLloop =

πQ2

Ncq2ψLloop

Total string energy :

E(Lloop) ∼ µstrLloop +
πQ2

Ncq2ψLloop

Loop length is stabilized at

L
(vorton)
loop ∼ Q

qψv
≫ 1

v
→ Stable Loop = Vorton [’88 Davis& Shellard]
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Vorton : Stable Remnant?

Vortons may survive until today?
[’21 H. Fukuda, A. V. Manohar, H. Murayama O. Telem]

✓ Charge leakage from the string through plasma scattering and
string oscillation becomes irrelevant for

T < Tleak ∼ y−2
D × 103 GeV for fa ∼ 1010 GeV

✓ Loops formed at Tleak statistically obtain a charge

Q ∼
√
L

(init)
loop Tleak , L

(init)
loop ∼ H

−1(Tleak)

→ Q ∼ 103 × (108 GeV/Tleak)
1/2

✓ Lloop shrinks down to L(vorton)
loop by emitting axions

✓ Stable vorton looks like a heavy atom, MV ∼ Qfa.

Vorton may be discoverable?
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Stability of Zero Mode

In the vacuum, PQ fermions decay via ψ → qL +HSM ...

✓ Why do zero modes not decay ? ∵ Zero modes are “massless”

The string loses (E, pz) = (E,E) if a zero mode decays

→ invariant mass of the final state : s = 0. No such a final state!

✓ The stability of the zero mode is valid only for the straight string.
[’21 MI, S. Kobayashi, Y. Nakayama, S. Shirai]

Zero modes can hit the inner wall of the string and pop out!

ψ0

qL

HSM

ψ

p⊥ψ ≫ mψ

Escape & Decay
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Stability of Zero Mode

✓ Maximum momentum in Vorton = Fermi-Momentum

εF ∼ Q/L(vorton)
loop ∼ v

✓ Curvature radius

L
(vorton)
loop ∼ Q/v ≫ v−1 → p⊥ψ ∼

εF

mϕL
(vorton)
loop

≪ mψ

✓ Tunneling & Decay is relevant !

Curve on the String
→ Perturbation on the profile function

h(ρ)→ h(ρ) + δh(ρ, φ, z)

ψ0

qL

HSM

δh

ψ∗qL

HSM

ψ∗

ψ0
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Stability of Zero Mode

✓ Annihilation operators :

b̂0(E) zero mode , âq SM quark , âH SM Higgs

✓ Ground State with n = 1 string : |0⟩
✓ Decay Amplitude :

T̂ = ⟨0|âqâHTei
∫
d4x[OM+OD]b̂0(E)†|0⟩

OM = mψδh(ρ, φ, z)ψ̄(e
iφPL + e−iφPR)ψ

OD = yDHSMψ̄RqL + h.c.,

✓ Born Approximation, we keep only O(δh)-term (|δh|2 ≪ |δh| ).
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Stability of Zero Mode

Decay rate of a zero mode with energy E.

✓ For a long string with perturbative modulation,

Γpert(E) ∼ O
(
10−1

)
× Cpert

|yD|2E
mϕR

× ξ2(mϕ/mψ)

R : curvature radius of string
Cpert : a factor associated with the shape of perturbation

[Cpert → O(1) for mildly perturbative curve]
ξ(mϕ/mψ) = overlap between zero-mode wave function

and the potential wall, dh(ρ)/dρ

ξ(
m
φ
/m

ψ
)

mφ/mψ

10−6

10−5

10−4

10−3

10−2

10−1

10−5 10−4 10−3 10−2 10−1 100 101 102 103 104 105

ξ(mϕ/mψ)
10−1

10−3

10−5

mϕ/mψ

100 102 104102104

ξ(mϕ/mψ) modulation independent
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Stability of Zero Mode

✓ For a closed loop like a circle, although no more
perturbative, we can put lower limit,

Γloop(E) > Γpert(E)|Cpert=O(1)

Zero mode decay → Vorton charge and size decrease
→ εF is always of O(v)

✓ Charge Leakage Rate

− Q̇
Q
> Γloop(ϵF ) ∼

ΓDεF
mϕmψ

v

Q
ξ2 >

ΓDεF
mϕmψ

v

Qinit
ξ2

→ Vorton does not survive cosmological timescale

− Q̇
Q
> 10−3 ×

(
Tleak

108 GeV

)1/2(
εF v

mϕmψ

)
ξ2 × ΓD



25 / 25

Summary

✓ Cosmic string appearing in the PQ mechanism have fermionic
zero modes

✓ Propagation direction of zero modes is one-way.
✓ On the string, chiral superconducting current can flow
✓ The chiral superconducting current has non-vanishing QED and

QCD charges
✓ Non-vanishing QED and QCD charges may stabilize the string

loop forming Vorton
✓ By taking into account the finite width and curvature of the string,

the zero mode leaks from the string
→ Vorton do not survive in a cosmological timescale.

✓ Cosmological evolution of chiral superconducting strings,
including charge leakage effects, is still open to study
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Backup Slides
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Cosmological Evolution of Axionic Cosmic String

Below T ∼ O(1)GeV, the axion potential is generated leading to energy
contrast around cosmic strings.

✓ Strings are attached by domain walls!

a

fa

V (a)

Axion Domain = 2π

m−1
a

Domain Wall

✓ For a model with NDW = 1, the strings are pulled with each other by the
domain wall tension and shredded into pieces.

The string-domain wall network disappear immediately.
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Perturbative Modulation

String along z-direction. Modulation in the y-direction

(x, y, z) = (0, f(z), z)

The modulation of the profile function,

h(ρ)→ h(ρ) + δh(ρ, φ, z) , δh(ρ, φ, z) =
y

ρ

dh(ρ)

dρ
× f(z)

Perturbative modulation,

|f | ∼ ε

mϕ
, ε≪ 1.
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Fermion Quantization around String

✓ Mode expansion of the fermion

ψ̂ =
1√
Lstr

∑
n>0

(
e−iEn(t−z)u(ρ) b̂0n + eiEn(t−z)v(ρ) d̂0n

†
)

+
∑

(bounded massive modes) +
∑

(unbounded modes)

En = 2πn/Lstr.

✓ Normalization :

u(ρ) = Nη exp
(
−
∫ ρ

0

mψh(ρ
′)dρ′

)
, v(ρ) = iγ2u(ρ)

∗

∫
dxdy|u(ρ)|2 = 1

✓ Quantization :

{b̂0n, b̂0†n′} = δnn′ , {d̂0n, d̂0†n′} = δnn′ .
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Modulation of long string

✓ Perturbative modulation on a long string:

f(z) =
∞∑

n=−∞

cne
−i 2πn

L
z ,

cn =
1

L

∫ L/2

−L/2
dzei

2πn
L
zf(z) ,

with c−n = c∗n.

✓ Master Formula of the decay rate :

Γ(E) ≃ 1

24
|yD|2ξ2

(
mϕ

mψ

)
E3

kn<2E∑
n>0

|cn|2F(kn/E)

F(x) = x2(1− x/2)
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Sinuous Modulation

✓ Sinuous modulation :

f(z) =
ε

mϕ
sin

(
2πz

L

)
, (ε≪ 1)

✓ Fourier coefficients :

c1 = i
ε

2mϕ
, cn = 0 , (n > 1)

✓ Decay rate :

Γ(E) ≃ π2

24

ε2|yD|2E
m2
ϕL

2

(
1− π

EL

)
ξ2

(
mϕ

mψ

)
.

✓ Curvature radius :

R =
L2

(2π)2εmϕ
.

✓ Rewritten decay rate :

Γ(E) ≃ 1

96
ε
|yD|2E
mϕR

ξ2
(
mϕ

mψ

)
.
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Piecewise Circle Modulation

✓ Piecewise Circle Modulation :

f(z) =

{√
R2 − (z − L/4)2 −

√
R2 − L2/16 , (0 < z < L/2) ,

−
√
R2 − (z − 3L/4)2 +

√
R2 − L2/16 , (L/2 < z < L) ,

✓ Order of modulation :

f(z = L/4) ≃
(
L2

32R

)
→ ε =

L2mϕ

32R

✓ Fourier coefficients :

c2n+1 =
iL2

2π3(2n+ 1)3R
, c2n = 0 ,

✓ Decay rate :

Γ(E) ≃ 1

72
ε
|yD|2E
mϕR

ξ2
(
mϕ

mψ

)
.
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Zero Mode Decay on Circle

Decay rate on circle > decay rate on piecewise circle modulation.
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L/2

The smaller L is taken, the better perturbative expansion.
The smaller L is taken, more the rate is underestimated.

→We put a lower limit on the zero mode decay rate using L which is just
barely within the range of the perturbation expansion :

L =

√
R

mϕ
↔ ε ∼ 1 .


