ON STABILITY OF FERMIONIC SUPERCONDUCTING CURRENT IN COSMIC STRING

Masahiro Ibe
Martch 8, 2024
ICRR, University of Tokyo

In collaboration with S. Kobayashi, Y. Nakayama (ICRR) and S. Shirai (IPMU) JHEP 05 (2021) 217

Strong CP Problem

\checkmark Experimentally, QCD is known to preserve CP symmetry very well.
\checkmark CP violating transitions in the SM are caused by CP violation in the weak interaction (i.e. by the CKM phase).

Figure from: https://en.wikipedia.org/wiki/Kaon

Strong CP Problem

CP conservation is not automatically guaranteed in QCD .
\checkmark QCD has its own CP-voilating parameter : $\boldsymbol{\theta}$

$$
\mathcal{L}_{\mathrm{QCD}}=-\frac{1}{4} G_{\mu \nu}^{a} G^{a \mu \nu}+\frac{g_{s}^{2}}{32 \pi^{2}} \theta G_{\mu \nu}^{a} \tilde{G}^{a \mu \nu}+\sum_{i}^{N_{f}} \bar{q}_{i}(i \not D-m) q_{i}
$$

[positive quark masses : $m>0$]
$\checkmark \boldsymbol{\theta}$-term is not invariant under \mathbf{P} and $\mathbf{C P}$ transformation

$$
\frac{g_{s}^{2}}{32 \pi^{2}} \theta G_{\mu \nu}^{a} \tilde{G}^{a \mu \nu} \xrightarrow{\mathbf{C P}}-\frac{g_{s}^{2}}{32 \pi^{2}} \theta G_{\mu \nu}^{a} \tilde{G}^{a \mu \nu}
$$

$\checkmark \boldsymbol{\theta}$-term is highly constrained experimentally.

$d_{n} / e \sim 10^{-15} \theta \mathrm{~cm} \quad$ ['79 Crewther, Veccia, Veneziano, Witten]
$\rightarrow \theta<10^{-11}$ why so small $?=$ strong CP problem !
Null observation of the neutron EDM:
$d_{n} / e<10^{-26} \mathrm{~cm} @ 90 \% \mathrm{CL}$
[PRL 124, 081803 (2020)].

Peccei-Quinn Mechanism and Axion

How to solve the strong CP problem?
If massless colored fermions exist, the strong CP problem goes away!
['77, Peccei-Quinn]
Massless colored PQ fermion : $\psi_{L, R}=P_{L, R} \psi$

$$
\mathcal{L}=\bar{\psi}_{L} i \not D \psi_{L}+\bar{\psi}_{R} i \not D \psi_{R}, \quad\left(D_{\mu}=\partial_{\mu}-i g_{s} G_{\mu}^{a} t^{a}\right) .
$$

A chiral $U(1)$ rotation,

$$
\psi_{L} \rightarrow e^{i \alpha} \psi_{L}, \quad \psi_{R} \rightarrow \psi_{R}
$$

shifts $\theta \rightarrow \theta+\alpha$ through the chiral anomaly.

$$
\theta \text { can be set to } 0!
$$

[Symmetry under the chiral $U(1)$ rotation $=P Q$ symmetry]

No such a massless colored fermions in reality... How to reconcile ?

Peccei-Quinn Mechanism and Axion

Make the PQ symmetry broken spontaneously !
\checkmark A complex field ϕ rotates under the PQ symmetry :

$$
\phi \rightarrow e^{i \phi} \phi, \quad \psi_{L} \rightarrow e^{-i \alpha} \psi_{L}, \quad \psi_{R} \rightarrow \psi_{R}
$$

\checkmark The chiral $\mathrm{U}(1)$ symmetry is spontaneously broken by $\langle\phi\rangle=v$.

The colored fermions obtain mass through:

$$
\begin{aligned}
& \mathcal{L}=\mathcal{L}(\phi)+\bar{\psi}_{L} i \not D \psi_{L}+\bar{\psi}_{R} i \not D \psi_{R}+y \phi \bar{\psi}_{R} \psi_{L}+\text { h.c. } \\
& \mathcal{L}(\phi)=\partial_{\mu} \phi^{*} \partial^{\mu} \phi-V(\phi) \leftarrow \text { symmetric under the } \mathrm{U}(1) \text { rotation }
\end{aligned}
$$

Colored fermions obtain mass,

$$
m_{\psi}=y v
$$

We can make the new colored fermions arbitrarily heavy! ... Any low-energy implications?

Peccei-Quinn Mechanism and Axion

Spontaneous breaking is associated with a Goldstone mode : Axion !
['78, Weinberg, '78 Wilczek]

Axion $=$ phase direction of ϕ :
$\left.\phi(x)\right|_{\text {axion }}=\frac{f_{a}}{\sqrt{2}} \exp \left[i \frac{a(x)}{f_{a}}\right], \quad f_{a}=\sqrt{2} \times v$ (axion decay constant)
Axion couples to QCD and QED through :

$$
\mathcal{L}_{\text {eff }}=\frac{g_{s}^{2}}{32 \pi^{2}} \frac{a}{f_{a}} G_{\mu \nu}^{a} \tilde{G}^{a \mu \nu}+\frac{C_{e} e^{2}}{32 \pi^{2}} \frac{a}{f_{a}} F_{\mu \nu}^{a} \tilde{F}^{a \mu \nu}
$$

Peccei-Quinn Mechanism and Axion

Spontaneous breaking is associated with a Goldstone mode : Axion !
['78, Weinberg, '78 Wilczek]

Axion $=$ phase direction of ϕ :
$\left.\phi(x)\right|_{\text {axion }}=\frac{f_{a}}{\sqrt{2}} \exp \left[i \frac{a(x)}{f_{a}}\right], \quad f_{a}=\sqrt{2} \times v$ (axion decay constant)
Axion couples to QCD and QED through :

$$
\mathcal{L}_{\text {eff }}=\frac{g_{s}^{2}}{32 \pi^{2}} \frac{a}{f_{a}} G_{\mu \nu}^{a} \tilde{G}^{a \mu \nu}+\frac{C_{e} e^{2}}{32 \pi^{2}} \frac{a}{f_{a}} F_{\mu \nu}^{a} \tilde{F}^{a \mu \nu}
$$

Axion obtains non-trivial potential due to QCD dynamics through the chiral anomaly

Peccei-Quinn Mechanism and Axion

\checkmark The lower limit on the axion decay constant:

$$
f_{a} \gtrsim 10^{8-9} \mathrm{GeV}, \quad \text { (supernovae/red-giant cooling) }
$$

https://cajohare.github.io/AxionLimits/docs/ap.html
\checkmark Axion is very light:

$$
m_{a}=\mathcal{O}(1) \mu \mathrm{V} \times\left(\frac{10^{12} \mathrm{GeV}}{f_{a}}\right)
$$

\checkmark Axion is a good candidate for dark matter:

$$
\Omega_{a} h^{2}=0.18 \times \theta_{\mathrm{init}}^{2}\left(\frac{f_{a}}{10^{12} \mathrm{GeV}}\right)^{1.19}\left(\frac{\Lambda_{\mathrm{QCD}}}{400 \mathrm{MeV}}\right)
$$

from the coherent oscillation of the axion (c.f. $\Omega_{\mathrm{DM}} h^{2} \simeq 0.12$). [e.g. 1301.1123 Kawasaki, Nakayama]

The PQ mechanism not only solves the strong CP problem but also provides a good candidate for dark matter!

Cosmic String

$U(1)$ symmetry breaking is associated with cosmic strings !
\checkmark Trivial vacuum configuration of the broken phase
$=$ phase in ϕ is aligned to the same direction [e.g. $(\operatorname{Re} \phi, \operatorname{Im} \phi)=(v, 0)$]

\checkmark Non-trivial vacuum configuration due to the finite causality length
$=$ phase of ϕ depends on the spatial direction [e.g. $(\cos \varphi, \sin \varphi)$]

$U(1)$ symmetry is restored at the core of the configuration!
\rightarrow energy concentration at the core = topological defect

Cosmic String

Energy concentrations connected in one dimension = Cosmic String

\checkmark The string tension (=mass per unit length)

$$
\mu_{\text {str }} \sim \pi f_{a}^{2} \log \frac{f_{a}}{\ell_{\text {corr }}}, \quad \ell_{\text {corr }} \sim \text { distance of the stirngs }
$$

\checkmark Long strings are stable due to the winding of the ϕ phase ($=$ topological charge, $\pi_{1}[U(1)]=\mathbb{Z}$)

Cosmological Evolution of Axionic Cosmic String

Assume the $\mathbf{P Q}$ symmetry breaking takes place after inflation at $T \sim f_{a}$.
\checkmark On average, $\mathcal{O}(10-100)$ number of cosmic strings are generated per Hubble volume, $V \sim H^{-3}$
\checkmark Long strings keep producing lots of string loops
\checkmark Loops (= 0 net topological charge) disappear by emitting axions [lifetime $\sim H^{-1}$ at the production time]
\checkmark Energy density of the string network keeps being subdominant

$$
\rho_{\mathrm{str}} \sim \mu_{\mathrm{str}}^{2} H^{2} \sim \frac{f_{a}^{2}}{M_{\mathrm{Pl}}^{2}} \times T^{4} \ll \rho_{\mathrm{tot}} \sim T^{4}
$$

with the correlation length between strings, $\ell_{\text {corr }} \sim 0.3 H^{-1}$

Fermion Zero Mode

\checkmark The colored fermions in the PQ mechanism become heavy $(\psi=y v)$ via

$$
\mathcal{L}=\mathcal{L}(\phi)+\phi+\bar{\psi}_{L} i \not D \psi_{L}+\bar{\psi}_{R} i \not D \psi_{R}+y \phi \bar{\psi}_{R} \psi_{L}+\text { h.c. } .
$$

\checkmark The massive fermions decay into the SM quarks via,

$$
\mathcal{O}_{\mathrm{D}}=y_{D} H_{\mathrm{SM}} \bar{\psi}_{R} q_{L}+h . c .
$$

with the decay rate,

$$
\Gamma_{D}=\frac{\left|y_{D}\right|^{2}}{16 \pi} m_{\psi}
$$

Fermion Zero Mode

\checkmark PQ symmetry is restored at the core of the string !

\checkmark Fermions do not have masses at the string core.
The existence of fermionic zero modes propagating along the string at the speed of light!
['81 Weinberg, '81 Jakiew\&Rossi]

Fermion Zero Mode

Dirac equation around cosmic string along the z-axis,

$$
\left[i \gamma^{\mu} \partial_{\mu}-m_{\psi} h(\rho)\left(e^{i n \varphi} P_{L}+e^{-i n \varphi} P_{R}\right)\right] \psi=0
$$

The transverse configuration:

$$
\begin{aligned}
& i \gamma^{1}\left(\partial_{1}+i\left(i \gamma^{1} \gamma^{2}\right) \partial_{2}\right) \psi_{L}=m_{\psi} h(\rho) e^{-i \varphi} \psi_{R} \\
& i \gamma^{1}\left(\partial_{1}+i\left(i \gamma^{1} \gamma^{2}\right) \partial_{2}\right) \psi_{R}=m_{\psi} h(\rho) e^{i \varphi} \psi_{L}
\end{aligned}
$$

Noting $\partial_{1} \pm i \partial_{2}=e^{ \pm i \varphi}\left(\partial_{\rho} \pm i \rho^{-1} \partial_{\varphi}\right), \varphi$-independent solution :

$$
\psi^{0}(x, y)=\mathcal{N} \eta \exp \left(-\int_{0}^{\rho} m_{\psi} h\left(\rho^{\prime}\right) d \rho^{\prime}\right), \quad \eta=(0,1, i, 0)^{T}
$$

2D Chirality : $\gamma_{5}^{(x y)}=i \gamma^{1} \gamma^{2}, \quad \gamma_{5}^{(z t)}=\gamma^{0} \gamma^{3}$

$$
\gamma_{5}^{(x y)} \psi_{L}^{0}=-\psi_{L}^{0}, \quad \gamma_{5}^{(x y)} \psi_{R}^{0}=+\psi_{R}^{0}, \quad \gamma_{5}^{(z t)} \psi^{0}=+\psi^{0}
$$

Zero mode is localized around the string with $\sim e^{-m_{\psi} \rho}$

Fermion Zero Mode

"Massless" propagation:

$$
\psi^{0}(t, x, y, z)=\alpha(t, z) \times \psi^{0}(x, y)
$$

The longitudinal part of Dirac equation:

$$
\left(\gamma^{0} \partial_{0}+\gamma^{3} \partial_{3}\right) \alpha(t, z) \eta=0, \quad \gamma_{5}^{(z t)} \eta=+\eta, \quad \rightarrow \quad\left(\partial_{0}+\partial_{3}\right) \alpha(t, z)=0
$$

\checkmark The zero-mode propagation is at the speed of light!

$$
\alpha(t, z)=\alpha(t-z)
$$

\checkmark Only right-movers exist [no $\alpha(t+z)$ mode]!
\checkmark Anti-particles are also right-movers:

$$
\text { Antiparticle : } \psi^{0 c}=i \gamma^{2} \psi^{0 *} \rightarrow \gamma_{5}^{(z t)} \psi^{0 c}=\psi^{0 c}
$$

\checkmark Left-movers appear along the string with $n=-1$

The fermion zero mode propagates at the speed of light but is one-way!

Fermion Zero Mode

The fermion zero mode propagates at the speed of light but is one-way!

String with $n=1$

String with $n=-1$

Fermion Zero modes are localized around the string

Chiral Superconductivity

\checkmark PQ fermions are also charged under $U(1)_{Y}$ of the $\mathbf{S M}$ and hence $\mathbf{Q E D}$
\because PQ fermions couple to the SM quarks via,

$$
\mathcal{O}_{\mathrm{D}}=y_{D} H_{\mathrm{SM}} \bar{\psi}_{R} q_{L}+\text { h.c. },
$$

Zero modes of PQ fermions on the string can carry QED and QCD current!
Apply an electric field E_{z} along the string in z-direction with $n=1$

E_{z}	${\underset{\psi}{\psi}}_{*}^{*} \underset{\psi^{c}}{*}$	Particle is accelerated in $z>0$ direction Antiparticle is accelerated in $z<0$ direction Only right-movers exist = Only particles get accelerated !

Chiral Superconductivity

\checkmark Particles obtain Fermi momentum $\varepsilon_{F}=q_{\psi} E_{Z} t$ ['85, Witten]

\checkmark QED current on the string ['85, Witten]

$$
J=\frac{1}{2 \pi} N_{c} q_{\psi} \varepsilon_{F}=\frac{1}{2 \pi} N_{c} q_{\psi}^{2} E_{z} t
$$

\checkmark QED current also has QED charge ['85, Callan\&Harvey]

$$
\frac{Q}{L_{\text {string }}}=J=\frac{1}{2 \pi} N_{c} q_{\psi}^{2} E_{z} t
$$

\checkmark QED current/charge remain even after E_{z} turned off
A current keeps flowing along the string = superconductivity!
[Strings also obtain QCD current similarly]

Vorton : Stable Remnant?

In the early Universe, the electric field is 0 on average.
\checkmark Local/temporal electric field may induce superconductive current.
\checkmark Loop productions in that region/time produce QED /QCD charged loops!
What happens to the charged loops?

A string loop with QED charge Q with a length $L_{\text {loop }}$:

$$
Q=\frac{1}{2 \pi} N_{c} q_{\psi} \varepsilon_{F} L_{\mathrm{loop}}, \quad E_{Q}=\frac{1}{4 \pi} N_{c} \varepsilon_{F}^{2} L_{\mathrm{loop}}=\frac{\pi Q^{2}}{N_{c} q_{\psi}^{2} L_{\mathrm{loop}}}
$$

Total string energy :

$$
E\left(L_{\text {loop }}\right) \sim \mu_{\text {str }} L_{\text {loop }}+\frac{\pi Q^{2}}{N_{c} q_{\psi}^{2} L_{\mathrm{loop}}}
$$

Loop length is stabilized at

$$
L_{\text {loop }}^{(\text {vorton })} \sim \frac{Q}{q_{\psi} v} \gg \frac{1}{v} \rightarrow \text { Stable Loop }=\text { Vorton ['88 Davis\& Shellard] }
$$

Vorton : Stable Remnant?

Vortons may survive until today?
['21 H. Fukuda, A. V. Manohar, H. Murayama O. Telem]
\checkmark Charge leakage from the string through plasma scattering and string oscillation becomes irrelevant for

$$
T<T_{\text {leak }} \sim y_{D}^{-2} \times 10^{3} \mathrm{GeV} \text { for } f_{a} \sim 10^{10} \mathrm{GeV}
$$

\checkmark Loops formed at $T_{\text {leak }}$ statistically obtain a charge

$$
\begin{aligned}
& Q \sim \sqrt{L_{\text {loop }}^{(\text {init })} T_{\text {leak }}}, \quad L_{\text {loop }}^{(\text {init })} \sim H^{-1}\left(T_{\text {leak }}\right) \\
& \\
& \rightarrow Q \sim 10^{3} \times\left(10^{8} \mathrm{GeV} / T_{\text {leak }}\right)^{1 / 2}
\end{aligned}
$$

$\checkmark L_{\text {loop }}$ shrinks down to $L_{\text {loop }}^{(\text {vorton) }}$ by emitting axions
\checkmark Stable vorton looks like a heavy atom, $M_{V} \sim Q f_{a}$.

Stability of Zero Mode

In the vacuum, PQ fermions decay via $\psi \rightarrow q_{L}+H_{S M} \ldots$
\checkmark Why do zero modes not decay ? \because Zero modes are "massless" The string loses $\left(E, p_{z}\right)=(E, E)$ if a zero mode decays \rightarrow invariant mass of the final state $: s=0$. No such a final state!
\checkmark The stability of the zero mode is valid only for the straight string. ['21 MI, S. Kobayashi, Y. Nakayama, S. Shirai] Zero modes can hit the inner wall of the string and pop out!

Escape \& Decay

$$
p_{\psi}^{\perp} \gg m_{\psi}
$$

Stability of Zero Mode

\checkmark Maximum momentum in Vorton $=$ Fermi-Momentum

$$
\varepsilon_{F} \sim Q / L_{\mathrm{loop}}^{(\text {vorton })} \sim v
$$

\checkmark Curvature radius

$$
L_{\text {loop }}^{(\text {vorton })} \sim Q / v \gg v^{-1} \rightarrow p_{\psi}^{\perp} \sim \frac{\varepsilon_{F}}{m_{\phi} L_{\text {loop }}^{(\text {vorton })}} \ll m_{\psi}
$$

\checkmark Tunneling \& Decay is relevant !

Curve on the String
\rightarrow Perturbation on the profile function

$$
h(\rho) \rightarrow h(\rho)+\delta h(\rho, \varphi, z)
$$

Stability of Zero Mode

Annihilation operators :
$\hat{b}^{0}(E)$ zero mode , $\quad \hat{a}_{q}$ SM quark, $\quad \hat{a}_{H}$ SM Higgs
\checkmark Ground State with $n=1$ string : $|0\rangle$
\checkmark Decay Amplitude :

$$
\begin{aligned}
& \hat{T}=\langle 0| \hat{a}_{q} \hat{a}_{H} T e^{i \int d^{4} x\left[\mathcal{O}_{M}+\mathcal{O}_{D}\right] \hat{b}^{0}(E)^{\dagger}|0\rangle} \\
& \mathcal{O}_{M}=m_{\psi} \delta h(\rho, \varphi, z) \bar{\psi}\left(e^{i \varphi} P_{L}+e^{-i \varphi} P_{R}\right) \psi \\
& \mathcal{O}_{\mathrm{D}}=y_{D} H_{\mathrm{SM}} \bar{\psi}_{R} q_{L}+h . c .,
\end{aligned}
$$

\checkmark Born Approximation, we keep only $\mathcal{O}(\delta h)$-term $\left(|\delta h|^{2} \ll|\delta h|\right)$.

Stability of Zero Mode

Decay rate of a zero mode with energy E.
\checkmark For a long string with perturbative modulation,

$$
\Gamma_{\text {pert }}(E) \sim \mathcal{O}\left(10^{-1}\right) \times \mathcal{C}_{\text {pert }} \frac{\left|y_{D}\right|^{2} E}{m_{\phi} R} \times \xi^{2}\left(m_{\phi} / m_{\psi}\right)
$$

R : curvature radius of string
$\mathcal{C}_{\text {pert }}:$ a factor associated with the shape of perturbation $\left[C_{\text {pert }} \rightarrow \mathcal{O}(1)\right.$ for mildly perturbative curve]
$\xi\left(m_{\phi} / m_{\psi}\right)=$ overlap between zero-mode wave function and the potential wall, $d h(\rho) / d \rho$

$\xi\left(m_{\phi} / m_{\psi}\right)$ modulation independent

Stability of Zero Mode

For a closed loop like a circle, although no more perturbative, we can put lower limit,

$$
\Gamma_{\text {loop }}(E)>\left.\Gamma_{\text {pert }}(E)\right|_{\mathcal{C}_{\text {pert }}=\mathcal{O}(1)}
$$

Zero mode decay \rightarrow Vorton charge and size decrease

$$
\rightarrow \varepsilon_{F} \text { is always of } \mathcal{O}(v)
$$

\checkmark Charge Leakage Rate

$$
-\frac{\dot{Q}}{Q}>\Gamma_{\text {loop }}\left(\epsilon_{F}\right) \sim \frac{\Gamma_{D} \varepsilon_{F}}{m_{\phi} m_{\psi}} \frac{v}{Q} \xi^{2}>\frac{\Gamma_{D} \varepsilon_{F}}{m_{\phi} m_{\psi}} \frac{v}{Q_{\text {init }}} \xi^{2}
$$

\rightarrow Vorton does not survive cosmological timescale

$$
-\frac{\dot{Q}}{Q}>10^{-3} \times\left(\frac{T_{\text {leak }}}{10^{8} \mathrm{GeV}}\right)^{1 / 2}\left(\frac{\varepsilon_{F} v}{m_{\phi} m_{\psi}}\right) \xi^{2} \times \Gamma_{D}
$$

Summary

Cosmic string appearing in the PQ mechanism have fermionic zero modes
Propagation direction of zero modes is one-way.
On the string, chiral superconducting current can flow
The chiral superconducting current has non-vanishing QED and QCD charges
\checkmark Non-vanishing QED and QCD charges may stabilize the string loop forming Vorton
\checkmark By taking into account the finite width and curvature of the string, the zero mode leaks from the string
\rightarrow Vorton do not survive in a cosmological timescale.
\checkmark Cosmological evolution of chiral superconducting strings, including charge leakage effects, is still open to study

Backup Slides

$$
4 \square>4 \text { 司 }>4 \equiv>4 \equiv \text { ミ }
$$

Cosmological Evolution of Axionic Cosmic String

Below $T \sim \mathcal{O}(1) \mathrm{GeV}$, the axion potential is generated leading to energy contrast around cosmic strings.
\checkmark Strings are attached by domain walls!

\checkmark For a model with $N_{\mathrm{DW}}=1$, the strings are pulled with each other by the domain wall tension and shredded into pieces.

The string-domain wall network disappear immediately.

Perturbative Modulation

String along z-direction. Modulation in the y-direction

$$
(x, y, z)=(0, f(z), z)
$$

The modulation of the profile function,

$$
h(\rho) \rightarrow h(\rho)+\delta h(\rho, \varphi, z), \quad \delta h(\rho, \varphi, z)=\frac{y}{\rho} \frac{d h(\rho)}{d \rho} \times f(z)
$$

Perturbative modulation,

$$
|f| \sim \frac{\varepsilon}{m_{\phi}}, \quad \varepsilon \ll 1
$$

Fermion Quantization around String

\checkmark Mode expansion of the fermion

$$
\begin{aligned}
\hat{\psi}= & \frac{1}{\sqrt{L_{\mathrm{str}}}} \sum_{n>0}\left(e^{-i E_{n}(t-z)} u(\rho) \hat{b}_{n}^{0}+e^{i E_{n}(t-z)} v(\rho) \hat{d}_{n}^{0 \dagger}\right) \\
& +\sum(\text { bounded massive modes })+\sum(\text { unbounded modes }) \\
E_{n}=2 & \pi n / L_{\mathrm{str}} .
\end{aligned}
$$

\checkmark Normalization :

$$
\begin{gathered}
u(\rho)=\mathcal{N} \eta \exp \left(-\int_{0}^{\rho} m_{\psi} h\left(\rho^{\prime}\right) d \rho^{\prime}\right), \quad v(\rho)=i \gamma_{2} u(\rho)^{*} \\
\int d x d y|u(\rho)|^{2}=1
\end{gathered}
$$

\checkmark Quantization :

$$
\left\{\hat{b}_{n}^{0}, \hat{b}_{n^{\prime}}^{0 \dagger}\right\}=\delta_{n n^{\prime}}, \quad\left\{\hat{d}_{n}^{0}, \hat{d}_{n^{\prime}}^{0 \dagger}\right\}=\delta_{n n^{\prime}}
$$

Modulation of long string

\checkmark Perturbative modulation on a long string:

$$
\begin{aligned}
& f(z)=\sum_{n=-\infty}^{\infty} c_{n} e^{-i \frac{2 \pi n}{L} z} \\
& c_{n}=\frac{1}{L} \int_{-L / 2}^{L / 2} d z e^{i \frac{2 \pi n}{L} z} f(z),
\end{aligned}
$$

with $c_{-n}=c_{n}^{*}$.
\checkmark Master Formula of the decay rate :

$$
\begin{aligned}
\Gamma(E) & \simeq \frac{1}{24}\left|y_{D}\right|^{2} \xi^{2}\left(\frac{m_{\phi}}{m_{\psi}}\right) E^{3} \sum_{n>0}^{k_{n}<2 E}\left|c_{n}\right|^{2} \mathcal{F}\left(k_{n} / E\right) \\
\mathcal{F}(x) & =x^{2}(1-x / 2)
\end{aligned}
$$

Sinuous Modulation

\checkmark Sinuous modulation:

$$
f(z)=\frac{\varepsilon}{m_{\phi}} \sin \left(\frac{2 \pi z}{L}\right), \quad(\varepsilon \ll 1)
$$

\checkmark Fourier coefficients :

$$
c_{1}=i \frac{\varepsilon}{2 m_{\phi}}, \quad c_{n}=0, \quad(n>1)
$$

\checkmark Decay rate :

$$
\Gamma(E) \simeq \frac{\pi^{2}}{24} \frac{\varepsilon^{2}\left|y_{D}\right|^{2} E}{m_{\phi}^{2} L^{2}}\left(1-\frac{\pi}{E L}\right) \xi^{2}\left(\frac{m_{\phi}}{m_{\psi}}\right)
$$

\checkmark Curvature radius:

$$
R=\frac{L^{2}}{(2 \pi)^{2} \varepsilon m_{\phi}}
$$

\checkmark Rewritten decay rate :

$$
\Gamma(E) \simeq \frac{1}{96} \varepsilon \frac{\left|y_{D}\right|^{2} E}{m_{\phi} R} \xi^{2}\left(\frac{m_{\phi}}{m_{\psi}}\right)
$$

Piecewise Circle Modulation

\checkmark Piecewise Circle Modulation:

$$
f(z)= \begin{cases}\sqrt{R^{2}-(z-L / 4)^{2}}-\sqrt{R^{2}-L^{2} / 16}, & (0<z<L / 2) \\ -\sqrt{R^{2}-(z-3 L / 4)^{2}}+\sqrt{R^{2}-L^{2} / 16}, & (L / 2<z<L)\end{cases}
$$

\checkmark Order of modulation :

$$
f(z=L / 4) \simeq\left(\frac{L^{2}}{32 R}\right) \rightarrow \varepsilon=\frac{L^{2} m_{\phi}}{32 R}
$$

\checkmark Fourier coefficients :

$$
c_{2 n+1}=\frac{i L^{2}}{2 \pi^{3}(2 n+1)^{3} R}, \quad c_{2 n}=0,
$$

\checkmark Decay rate :

$$
\Gamma(E) \simeq \frac{1}{72} \varepsilon \frac{\left|y_{D}\right|^{2} E}{m_{\phi} R} \xi^{2}\left(\frac{m_{\phi}}{m_{\psi}}\right) .
$$

Zero Mode Decay on Circle

Decay rate on circle $>$ decay rate on piecewise circle modulation.

The smaller L is taken, the better perturbative expansion.
The smaller L is taken, more the rate is underestimated.
\rightarrow We put a lower limit on the zero mode decay rate using L which is just barely within the range of the perturbation expansion :

$$
L=\sqrt{\frac{R}{m_{\phi}}} \leftrightarrow \varepsilon \sim 1 .
$$

